Controlling the Variable Inertia of Flywheel: A Scientific Review

Authors

DOI:

https://doi.org/10.69955/ajoeee.2024.v4i1.57

Keywords:

VIF, MR Fluid, Smart Material

Abstract

Due to the variation of the moment of inertia, flywheels, a well-known mechanical system, can balance the energy output by preventing fluctuations in rotational speed. Examples of prevalent applications are the engine with internal combustion and industrial apparatus. A flywheel with a considerable moment of inertia is mandatory to accomplish reduced angular velocity variations. A flywheel with a variable moment of inertia can be recommended for specific applications to obtain sustainable energy savings. Variations in the masses' radii from the flywheel axis can yield the concept of true inertia. Still, the control techniques for the variable inertial flywheel (VIF) are relatively complex. This paper critically analyses the available literature on VIF control methods and focuses on their application.

Metrics

Metrics Loading ...

Downloads

Download data is not yet available.

References

J. A. Kirk, “Flywheel energy storage—I,” Int J Mech Sci, vol. 19, no. 4, pp. 223–231, Jan. 1977; https://doi.org/10.1016/0020-7403(77)90064-9 DOI: https://doi.org/10.1016/0020-7403(77)90064-9

D. Ullman and H. Velkoff, “An introduction to the variable inertia flywheel (VIF),” Journal of Applied Mechanics, Transactions ASME, vol. 46, no. 1, pp. 186–190, 1979; https://doi.org/10.1115/1.3424494 DOI: https://doi.org/10.1115/1.3424494

X. Li and A. Palazzolo, “A review of flywheel energy storage systems: state of the art and opportunities,” J Energy Storage, vol. 46, p. 103576, Feb. 2022; https://doi.org/10.1016/j.est.2021.103576 DOI: https://doi.org/10.1016/j.est.2021.103576

C. Li, M. Liang, and T. Wang, “Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals,” Mech Syst Signal Process, vol. 64–65, pp. 132–148, Dec. 2015; https://doi.org/10.1016/j.ymssp.2015.04.004 DOI: https://doi.org/10.1016/j.ymssp.2015.04.004

D. Richiedei, A. Trevisani, and G. Zanardo, “A Constrained Convex Approach to Modal Design Optimization of Vibrating Systems,” Journal of Mechanical Design, vol. 133, no. 6, Jun. 2011; https://doi.org/10.1115/1.4004221 DOI: https://doi.org/10.1115/1.4004221

C. E. Spiekermann, C. J. Radcliffe, and E. D. Goodman, “Optimal Design and Simulation of Vibrational Isolation Systems,” American Society of Mechanical Engineers (Paper), 1984.

Y. Liu, “Semi-active damping control for vibration isolation of base disturbances,” Diss. University of Southampton, 2004.

M. Trikande, N. Karve, R. Anand Raj, V. Jagirdar, and R. Vasudevan, “Semi-active vibration control of an 8x8 armored wheeled platform,” Journal of Vibration and Control, vol. 24, no. 2, pp. 283–302, Jan. 2018; https://doi.org/10.1177/1077546316638199 DOI: https://doi.org/10.1177/1077546316638199

J. D. Carlson and M. R. Jolly, “MR fluid, foam and elastomer devices,” Mechatronics, vol. 10, no. 4, pp. 555–569, 2000; https://doi.org/10.1016/S0957-4158(99)00064-1 DOI: https://doi.org/10.1016/S0957-4158(99)00064-1

P. M. V. Kartašovas, V. Barzdaitis, “Modeling and simulation of variable inertia rotor,” J. Vibroengineering, vol. 4, pp. 1745–1750, 2012.

Masahiro Yamazaki, “Variable Mass Flywheel Mechanism: USA,” US 6915720 B2, 2005.

K. D. Prabhakar Kushwaha, Sanjoy K Ghoshal, “Dynamic analysis of a hydraulic motor drive with variable inertia flywheel,” J Systems and Control Engineering, vol. 234(6), pp. 734–747, 2020. https://doi.org/10.1177/0959651819875914 DOI: https://doi.org/10.1177/0959651819875914

M. I. Daoud, A. S. Abdel-Khalik, A. Massoud, S. Ahmed, and N. H. Abbasy, “On the development of flywheel storage systems for power system applications: A survey,” in Proceedings of the 2012 XXth International Conference on Electrical Machines, France, pp. 2119--2125: Marseille, Sep. 2012, pp. 2–5. https://doi.org/10.1109/ICElMach.2012.6350175 DOI: https://doi.org/10.1109/ICElMach.2012.6350175

L. Barelli et al., “Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants,” Energy, vol. 173, pp. 937–950, 2019. https://doi.org/10.1016/j.energy.2019.02.143 DOI: https://doi.org/10.1016/j.energy.2019.02.143

A. C. Mahato, S. K. Ghoshal, and A. K. Samantaray, “Influence of variable inertia flywheel and soft switching on a power hydraulic system,” SN Appl Sci, vol. 1, no. 6, p. 605, Jun. 2019; https://doi.org/10.1007/s42452-019-0623-0

Uddin, M. N., M. M. Rashid, M. G. Mostafa, H. Belayet, S. M. Salam, and N. A. Nithe. "Global energy: need, present status, future trend and key issues." Global Journal of Research In Engineering 16, no. 1 (2016).

M. N. Uddin, M. M. Rashid, M. T. Rahman, B. Hossain, S. M. Salam and N. A. Nithe, "Custom MPPT design of solar power switching network for racing car," 2015 18th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2015, pp. 11-16; https://doi.org/10.1109/ICCITechn.2015.7488034 DOI: https://doi.org/10.1109/ICCITechn.2015.7488034

S. K. Jayakar, Vijayaselvan, Das, “Variable Inertia Flywheel,” 2012

J. Braid, “Conceptual design of a liquid-based variable inertia flywheel for microgrid applications,” ENERGYCON 2014 - IEEE International Energy Conference, no. 2, pp. 1291–1296, 2014; https://doi.org/10.1109/ENERGYCON.2014.6850589 DOI: https://doi.org/10.1109/ENERGYCON.2014.6850589

X. Dong, J. Xi, P. Chen, and W. Li, “Magneto-rheological variable inertia flywheel,” Smart Mater Struct, vol. 27, no. 11, p. 115015, Nov. 2018; https://doi.org/10.1088/1361-665X/aad42b DOI: https://doi.org/10.1088/1361-665X/aad42b

L. Islam, M. M. Rashid, and M. A. Faysal, “Investigation of the Energy Saving Capability of a Variable Inertia Magneto-Rheological (MR) Flywheel,” vol. 2, no. 1, pp. 25–31, 2022. DOI: https://doi.org/10.69955/ajoeee.2022.v2i1.30

S. M. Salam and M. M. Rashid, “A new approach to analysis and simulation of flywheel energy storage system,” in 8th International Conference on Mechatronics Engineering (ICOM 2022), Institution of Engineering and Technology, 2022, pp. 90–94; https://doi.org/10.1049/icp.2022.2271 DOI: https://doi.org/10.1049/icp.2022.2271

Y. Zhang, X. Zhang, T. Qian, and R. Hu, “Modeling and simulation of a passive variable inertia flywheel for diesel generator,” Energy Reports, vol. 6, pp. 58–68, 2020; https://doi.org/10.1016/j.egyr.2020.01.001 DOI: https://doi.org/10.1016/j.egyr.2020.01.001

Q. L. Yiqing Yang *, Peihao Chen, “A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel,” Appl Energy, vol. 302, 2021. https://doi.org/10.1016/j.apenergy.2021.117528 DOI: https://doi.org/10.1016/j.apenergy.2021.117528

Q. Li, X. Li, J. Mi, B. Jiang, S. Chen, and L. Zuo, “Tunable Wave Energy Converter Using Variable Inertia Flywheel,” IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 1265–1274, Apr. 2021; https://doi.org/10.1109/TSTE.2020.3041664

S. M. Salam, M. I. Uddin and M. R. Bin Moinuddin, "Impact Analysis of Large Number of Non-Linear Lighting Loads on Power Quality in Distribution Network," 2019 4th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 2019, pp. 1-5; https://doi.org/10.1109/EICT48899.2019.9068811 DOI: https://doi.org/10.1109/EICT48899.2019.9068811

L. G. Yuan, F. M. Zeng, and G. X. Xing, “Research on the design and control strategy of variable inertia flywheel in diesel generator unit under pulsed load,” in 2010 International Conference on Computing, Control and Industrial Engineering, CCIE 2010, Control and Industrial Engineering, 2010, pp. 187–189; https://doi.org/10.1109/CCIE.2010.55 DOI: https://doi.org/10.1109/CCIE.2010.55

C. Jauch, “Controls of a Flywheel in a Wind Turbine Rotor,” Wind Eng. 2016, vol. 40, pp. 173–185. https://doi.org/10.1177/0309524X16641577 DOI: https://doi.org/10.1177/0309524X16641577

Figliotti MP and Gomes MW, “A variable-inertia flywheel model for regenerative braking on a bicycle,” ASME 2014 dynamic systems and control conference, San Antonio, New York: American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2014-6276 DOI: https://doi.org/10.1115/DSCC2014-6276

T. Xu, M. Liang, C. Li, and S. Yang, “Design and analysis of a shock absorber with variable moment of inertia for passive vehicle suspensions,” J Sound Vib, vol. 355, pp. 66–85, 2015; https://doi.org/10.1016/j.jsv.2015.05.035 DOI: https://doi.org/10.1016/j.jsv.2015.05.035

A. C. Mahato, S. K. Ghoshal, and A. K. Samantaray, Influence of variable inertia flywheel and soft switching on a power hydraulic system, vol. 1, no. 6. Nat. Appl. Sci 1: Springer, 2019; https://doi.org/10.1007/s42452-019-0623-0 DOI: https://doi.org/10.1007/s42452-019-0623-0

M. Huang, “Optimization of powered wheels for commercial aircraft and design of test scheme,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 7, pp. 1751–1764, Jun. 2023; https://doi.org/10.1177/09544070221093182 DOI: https://doi.org/10.1177/09544070221093182

Q. Li, X. Li, J. Mi, B. Jiang, S. Chen, and L. Zuo, “Tunable Wave Energy Converter Using Variable Inertia Flywheel,” IEEE Transactions on Sustainable Energy, vol. 12, no. 2, pp. 1265–1274, 2021; https://doi.org/10.1109/TSTE.2020.3041664 DOI: https://doi.org/10.1109/TSTE.2020.3041664

A. Preumont, “Vibration Control of Active Structures,” Springer, 3rd edition, 2011, doi: 10.1007/0-306-48422-6. https://doi.org/10.1007/978-94-007-2033-6 DOI: https://doi.org/10.1007/0-306-48422-6

S.-G. Luca, F. Chira, and V.-O. Rosca, “Passive Active and Semi-Active Control Systems in Civil Engineeering,” Constructil Arhitectura, vol. 3, p. 4, 2005.

M. J. Wilson, A. Fuchs, and F. Gordaninejad, “Development and characterization of magnetorheological polymer gels,” J Appl Polym Sci, vol. 84, no. 14, pp. 2733–2742, 2002; https://doi.org/10.1002/app.10525 DOI: https://doi.org/10.1002/app.10525

X. H. Liu, P. L. Wong, W. Wang, and W. A. Bullough, “Feasibility study on the storage of magnetorheological fluid using metal foams,” J Intell Mater Syst Struct, vol. 21, no. 12, pp. 1193–1200, 2010; https://doi.org/10.1177/1045389X10382585 DOI: https://doi.org/10.1177/1045389X10382585

E. J. R. Hardy, “The magnetic fluid clutch,” Students Quarterly Journal, vol. 22, no. 86, p. 51, 1951; https://doi.org/10.1049/sqj.1951.0064 DOI: https://doi.org/10.1049/sqj.1951.0064

W. Lu, Y. Luo, L. L. Kang, and D. Wei, “Characteristics of magnetorheological fluids under new formulation,” J Test Eval, vol. 47, no. 4, 2019; https://doi.org/10.1520/JTE20170477 DOI: https://doi.org/10.1520/JTE20170477

A. G. Olabi and A. Grunwald, “Design and application of magneto-rheological fluid,” Mater Des, vol. 28, no. 10, pp. 2658–2664, 2007; https://doi.org/10.1016/j.matdes.2006.10.009 DOI: https://doi.org/10.1016/j.matdes.2006.10.009

Z. Xia, X. Wu, G. Peng, L. Wang, W. Li, and W. Wen, “A novel nickel nanowire based magnetorheological material,” Smart Mater Struct, vol. 26, no. 5, 2017; https://doi.org/10.1088/1361-665X/aa5bd0 DOI: https://doi.org/10.1088/1361-665X/aa5bd0

James. Van de Ven, “Fluidic Variable Inertia Flywheel,” 7th international energy conversion engineering conference, 2009. https://doi.org/10.2514/6.2009-4501 DOI: https://doi.org/10.2514/6.2009-4501

M. H. Yousefi-Koma, Aghil, “Active Vibration Control of Flywheel Bearing Using Piezo Sensor-Actuator”.

Uddin, Md Nasir, M. M. Rashid, M. G. Mostafa, H. Belayet, S. M. Salam, and N. A. Nithe. "New Energy Sources: Technological Status and Economic Potentialities." Global Journal of Science Frontier Research 16, no. 1 (2016): 24-37.

S. M. Salam, N. Mohammad and F. Hossain, "A new approach to Analysis the Impact of Demand Side Management for Temperature Control Load Consideration in a Test Bus System," 2021 5th International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, 2021, pp. 1-6; https://doi.org/10.1109/EICT54103.2021.9733717 DOI: https://doi.org/10.1109/EICT54103.2021.9733717

Downloads

Published

2024-06-20

Issue

Section

Articles

How to Cite

[1]
“Controlling the Variable Inertia of Flywheel: A Scientific Review”, AJoEEE, vol. 4, no. 1, pp. 17–28, Jun. 2024, doi: 10.69955/ajoeee.2024.v4i1.57.

Similar Articles

You may also start an advanced similarity search for this article.