Comprehensive Review of Energy Efficiency Optimization for UAV-Assisted Cognitive Radio Networks with RIS and MEC Integration
DOI:
https://doi.org/10.69955/ajoeee.2025.v5i2.81Keywords:
Unmanned aerial vehicle (UAV), Cognitive radio networks (CRNs) and Mobile Edge Computing (MEC) systems, Reconfigurable Intelligent Surface (RIS).Abstract
This extensive analysis examines how Cognitive Radio Networks (CRNs) can optimise energy efficiency by integrating UAVs, RIS, and MEC systems. Synergistic applications in 6G networks and IoT infrastructure offer unprecedented opportunities to establish sustainable, intelligent wireless communication systems. UAVs enable flexible network deployment in varied contexts by providing mobile base stations with dynamic spectrum access. Amplification-free programmable passive beamforming and phase-shift control improve wireless communication with RIS. By localising data processing and offloading tasks, MEC reduces latency and communication energy consumption. The survey addresses system complexity, dynamic channel variability, interference control, resource scheduling, scalability, security risks, and privacy protection with a single framework. We note that the collaborative optimisation of UAV trajectories, RIS phase shifts, MEC resource allocation, and CRN spectrum sensing improves energy efficiency by 60-75%, exceeding the gains from decoupled component-level optimisation. Real-time machine learning algorithms for dynamic adaptation, hardware miniaturisation for aerial RIS deployment, blockchain-based security protocols, heterogeneous system interoperability standardisation, and field validation through real-world testbeds to prove theoretical energy efficiency gains are future research priorities.
Downloads
References
"Energy-Aware Task Completion Delay Optimisation of Space- Aerial Enabled MEC System," 2023.
M. Rihan, A. Zappone, S. Buzzi, G. Fodor, and M. Debbah, "Passive versus active reconfigurable intelligent surfaces for integrated sensing and communication: Challenges and opportunities," IEEE Newt., vol. 38, no. 3, pp. 218-226, 2023. https://doi.org/10.1109/MNET.2023.3321542 DOI: https://doi.org/10.1109/MNET.2023.3321542
J. Xie et al., "The associations between modifiable risk factors and nonalcoholic fatty liver disease: a comprehensive Mendelian randomization study," Hepatology, vol. 77, no. 3, pp. 949-964, 2023. https://doi.org/10.1002/hep.32728 DOI: https://doi.org/10.1002/hep.32728
X. Qin, W. Yu, Z. Song, T. Hou, Y. Hao, and X. Sun, "Energy Ef fi ciency Optimization for RIS-Assisted UAV-Enabled MEC Systems".
S. Sachan, R. Sharma, and A. Sehgal, "MEC Based Energy Efficient Scheduling for Internet of Vehicles," 2021 5th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2021, pp. 1-5, 2021. https://doi.org/10.1109/ISCON52037.2021.9702330 DOI: https://doi.org/10.1109/ISCON52037.2021.9702330
L. Zhao, G. Zhou, and G. A. N. Zheng, "Open-Source Multi-Access Edge Computing for 6G : Opportunities and Challenges," IEEE Access, vol. 9, pp. 158426-158439, 2021. https://doi.org/10.1109/ACCESS.2021.3130418 DOI: https://doi.org/10.1109/ACCESS.2021.3130418
L. Zhou, W. Xu, C. Wang, and H. Chen, "RIS-Enabled UAV Cognitive Radio Networks: Trajectory Design and Resource Allocation," pp. 1-15, 2023. https://doi.org/10.3390/info14020075 DOI: https://doi.org/10.3390/info14020075
S. Optimization, X. Diao, W. Yang, L. Yang, and Y. Cai, "UAV-Relaying-Assisted Multi-Access Edge Computing with Multi-Antenna Base Station:" vol. 70, no. 9, pp. 9495-9509, 2021. https://doi.org/10.1109/TVT.2021.3101298 DOI: https://doi.org/10.1109/TVT.2021.3101298
Mahmood, T. X. Vu, W. U. Khan, S. Chatzinotas, and B. Ottersten, "Optimizing Computational and Communication Resources for MEC Network Empowered UAV-RIS Communication Optimizing Computational and Communication Resources for MEC Network Empowered UAV-RIS Communication," 2022. https://doi.org/10.36227/techrxiv.21196036 DOI: https://doi.org/10.36227/techrxiv.21196036
P. Cochrane and F. Ngobigha, "Future Networking-v-Energy Limits," in 2024 24th International Conference on Transparent Optical Networks (ICTON), 2024, pp. 1-6. https://doi.org/10.1109/ICTON62926.2024.10647572 DOI: https://doi.org/10.1109/ICTON62926.2024.10647572
S. Thapliyal, R. Pandey, and C. Charan, "Analysis of NOMA based UAV assisted short-packet communication system and blocklength minimization for IoT applications," Wirel. Networks, vol. 28, no. 6, pp. 2695-2712, 2022. https://doi.org/10.1007/s11276-022-02996-w DOI: https://doi.org/10.1007/s11276-022-02996-w
B. Shang, H. V. Poor, and L. Liu, "Aerial reconfigurable intelligent surfaces meet mobile edge computing," IEEE Wirel. Commun., vol. 29, no. 6, pp. 104-111, 2022.https://doi.org/10.1109/MWC.001.2200009 DOI: https://doi.org/10.1109/MWC.001.2200009
H. Xiao, H. Jiang, L.-P. Deng, Y. Luo, and Q.-Y. Zhang, "Outage energy efficiency maximization for UAV-assisted energy harvesting cognitive radio networks," IEEE Sens. J., vol. 22, no. 7, pp. 7094-7105, 2022.https://doi.org/10.1109/JSEN.2022.3154801 DOI: https://doi.org/10.1109/JSEN.2022.3154801
M. M. Saeed et al., "Enhancing Energy Efficiency in UAV Cognitive Radio Networks: A Machine Learning-Based Optimization Approach," in 2024 1st International Conference on Emerging Technologies for Dependable Internet of Things (ICETI), 2024, pp. 1-5. https://doi.org/10.1109/ICETI63946.2024.10777273 DOI: https://doi.org/10.1109/ICETI63946.2024.10777273
J. Ouyang, J. Ding, R. Wang, B. Zhao, and M. Lin, "Robust Secrecy-Energy Efficient Beamforming for Jittering UAV in Cognitive Satellite-Aerial Networks," IEEE Trans. Aerosp. Electron. Syst., 2025. https://doi.org/10.1109/TAES.2025.3552313 DOI: https://doi.org/10.1109/TAES.2025.3552313
M. Zhao, R. Zhang, Z. He, and K. Li, "Joint Optimization of Trajectory, Offloading, Caching, and Migration for UAV-Assisted MEC," IEEE Trans. Mob. Comput., 2024. https://doi.org/10.1109/TMC.2024.3486995 DOI: https://doi.org/10.1109/TMC.2024.3486995
X. Zhang, Z. Chen, Y. Zhang, Y. Liu, M. Jin, and T. Qiu, "Deep-Reinforcement-Learning-Based Distributed Dynamic Spectrum Access in Multiuser Multichannel Cognitive Radio Internet of Things Networks," IEEE Internet Things J., vol. 11, no. 10, pp. 17495-17509, 2024. https://doi.org/10.1109/JIOT.2024.3359277 DOI: https://doi.org/10.1109/JIOT.2024.3359277
D. Wang, J. Wang, J. Wang, and J. Liu, "Spectrum Sharing in Cognitive UAV Networks Based on Multi-Agent Reinforcement Learning," IEEE J. Miniaturization Air Sp. Syst., 2024. https://doi.org/10.1109/JMASS.2024.3436642 DOI: https://doi.org/10.1109/JMASS.2024.3436642
Y. J. Wong, M.-L. Tham, B.-H. Kwan, and A. Iqbal, "Addressing environmental stochasticity in reconfigurable intelligent surface aided unmanned aerial vehicle networks: Multi-task deep reinforcement learning based optimization for physical layer security," Internet of Things, vol. 27, p. 101270, 2024. https://doi.org/10.1016/j.iot.2024.101270 DOI: https://doi.org/10.1016/j.iot.2024.101270
M. S. Adam, R. Nordin, N. F. Abdullah, A. Abu-Samah, O. A. Amodu, and M. H. Alsharif, "Optimizing disaster response through efficient path planning of mobile aerial base station with genetic algorithm," Drones, vol. 8, no. 6, p. 272, 2024. https://doi.org/10.3390/drones8060272 DOI: https://doi.org/10.3390/drones8060272
M. Ahmed et al., "A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges," Comput. Sci. Rev., vol. 54, no. August, 2024, doi: 10.1016/j.cosrev.2024.100668. https://doi.org/10.1016/j.cosrev.2024.100668
A. Elnabty, Y. Fahmy, and M. Kafafy, "A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks," Phys. Commun., vol. 51, p. 101564, 2022. https://doi.org/10.1016/j.phycom.2021.101564 DOI: https://doi.org/10.1016/j.phycom.2021.101564
H. Jin et al., "A survey of energy efficient methods for UAV communication," Veh. Commun., vol. 41, p. 100594, 2023, doi: 10.1016/j.vehcom.2023.100594. https://doi.org/10.1016/j.vehcom.2023.100594 DOI: https://doi.org/10.1016/j.vehcom.2023.100594
G. Alsuhli, A. Fahim, and Y. Gadallah, "A survey on the role of UAVs in the communication process: A technological perspective," Comput. Commun., vol. 194, pp. 86-123, 2022. https://doi.org/10.1016/j.comcom.2022.07.021 DOI: https://doi.org/10.1016/j.comcom.2022.07.021
B. Hua et al., "Channel modeling for UAV-to-ground communications with posture variation and fuselage scattering effect," IEEE Trans. Commun., vol. 71, no. 5, pp. 3103-3116, 2023. https://doi.org/10.1109/TCOMM.2023.3255900 DOI: https://doi.org/10.1109/TCOMM.2023.3255900
T. Sheltami, G. Ahmed, and A. Yasar, "An optimization approach of iod deployment for optimal coverage based on radio frequency model," 2024. https://doi.org/10.32604/cmes.2023.044973 DOI: https://doi.org/10.32604/cmes.2023.044973
F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, "An inside job: Remote power analysis attacks on FPGAs," IEEE Des. Test, vol. 38, no. 3, pp. 58-66, 2021. https://doi.org/10.1109/MDAT.2021.3063306 DOI: https://doi.org/10.1109/MDAT.2021.3063306
X. Pang, W. Mei, N. Zhao, and R. Zhang, "Intelligent reflecting surface assisted interference mitigation for cellular-connected UAV," IEEE Wirel. Commun. Lett., vol. 11, no. 8, pp. 1708-1712, 2022. https://doi.org/10.1109/LWC.2022.3175920 DOI: https://doi.org/10.1109/LWC.2022.3175920
Y. Liu, J. Xie, C. Xing, S. Xie, and X. Luo, "Self-organization of UAV networks for maximizing minimum throughput of ground users," IEEE Trans. Veh. Technol., 2024. https://doi.org/10.1109/TVT.2024.3369020 DOI: https://doi.org/10.1109/TVT.2024.3369020
N. Lin, Y. Liu, L. Zhao, D. O. Wu, and Y. Wang, "An adaptive UAV deployment scheme for emergency networking," IEEE Trans. Wirel. Commun., vol. 21, no. 4, pp. 2383-2398, 2021. https://doi.org/10.1109/TWC.2021.3111991 DOI: https://doi.org/10.1109/TWC.2021.3111991
L. Zhou, X. Ning, M.-Y. You, R. Zhang, and Q. Shi, "Robust multi-UAV placement optimization for AOA-based cooperative localization," IEEE Trans. Intell. Veh., 2024. https://doi.org/10.1109/TIV.2024.3362818 DOI: https://doi.org/10.1109/TIV.2024.3362818
Y. Wang, Z. Tang, A. Huang, H. Zhang, L. Chang, and J. Pan, "Placement of UAV-mounted edge servers for internet of vehicles," IEEE Trans. Veh. Technol., 2024. https://doi.org/10.1109/TVT.2024.3368407 DOI: https://doi.org/10.1109/TVT.2024.3368407
Carvajal-Rodríguez, D. S. Guamán, C. Tipantuña, F. Grijalva, and L. F. Urquiza, "3D placement optimization in UAV-enabled communications: A systematic mapping study," IEEE Open J. Veh. Technol., 2024. https://doi.org/10.1109/OJVT.2024.3379751 DOI: https://doi.org/10.1109/OJVT.2024.3379751
G. Gemmi, M. Segata, and L. Maccari, "Estimating coverage and capacity of high frequency mobile networks in ultradense urban areas," Comput. Commun., vol. 223, pp. 81-89, 2024. https://doi.org/10.1016/j.comcom.2024.04.030 DOI: https://doi.org/10.1016/j.comcom.2024.04.030
Z. Yang, F. Xie, J. Zhou, Y. Yao, C. Hu, and B. Zhou, "AIGDet: altitude-information guided vehicle target detection in UAV-based images," IEEE Sens. J., 2024. https://doi.org/10.1109/JSEN.2024.3406540 DOI: https://doi.org/10.1109/JSEN.2024.3406540
T. Khaled et al., "Drone-Enabled Connectivity: Advancements and Challenges in B5G/6G Networks," in 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), 2024, pp. 1-7. https://doi.org/10.1109/ISPA59904.2024.10536779 DOI: https://doi.org/10.1109/ISPA59904.2024.10536779
de S. Batista and A. L. Dos Santos, "A Survey on Resilience in Information Sharing on Networks: Taxonomy and Applied Techniques," ACM Comput. Surv., vol. 56, no. 12, pp. 1-36, 2024. https://doi.org/10.1145/3659944 DOI: https://doi.org/10.1145/3659944
G. Ezhilarasan, S. R. Anwar, and S. Gupta, "Building Fault-Tolerant Wireless Access Networks with Network Coding," in 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2024, pp. 1-6. https://doi.org/10.1109/ICCCNT61001.2024.10726005 DOI: https://doi.org/10.1109/ICCCNT61001.2024.10726005
Y. Yigit, K. Duran, N. Moradpoor, L. Maglaras, N. Van Huynh, and B. Canberk, "Machine learning for smart healthcare management using iot," in IoT and ML for Information Management: A Smart Healthcare Perspective, Springer, 2024, pp. 135-166. https://doi.org/10.1007/978-981-97-5624-7_4 DOI: https://doi.org/10.1007/978-981-97-5624-7_4
E. T. Michailidis, K. Maliatsos, and D. Vouyioukas, "Software-Defined Radio Deployments in UAV-Driven Applications: A Comprehensive Review," IEEE Open J. Veh. Technol., 2024. https://doi.org/10.36227/techrxiv.171778948.88990152/v1 DOI: https://doi.org/10.36227/techrxiv.171778948.88990152/v1
Wigchert, S. Sciancalepore, and G. Oligeri, "Detection of Aerial Spoofing Attacks to LEO Satellite Systems via Deep Learning," arXiv Prepr. arXiv2412.16008, 2024. https://doi.org/10.1016/j.comnet.2025.111408 DOI: https://doi.org/10.1016/j.comnet.2025.111408
S. Bashir, Q. Hu, C. Zhao, J. Zhang, D. Yue, and Q. Zhang, "Spectrum Sensing Sharing for 5g B5g (Ris) in Cognitive Radio Networks: Recent Advances Research Challenges and Future Direction a Survey".
Piccioni, R. Alesii, F. Santucci, and F. Graziosi, "A Testing Framework for Joint Communication and Sensing in Synthetic Aperture Radars," IEEE Access, 2025. https://doi.org/10.1109/ACCESS.2025.3531328 DOI: https://doi.org/10.1109/ACCESS.2025.3531328
Wang, Y. Zhang, F. Chu, G. Ding, and R. Xu, "Analysis and Optimization of UAV-Assisted Covert Communications in Interweave Cognitive Radio Networks," IEEE Trans. Cogn. Commun. Netw., 2025. https://doi.org/10.1109/TCCN.2025.3526846 DOI: https://doi.org/10.1109/TCCN.2025.3526846
N. A. Khalek, D. H. Tashman, and W. Hamouda, "Advances in Machine Learning-Driven Cognitive Radio for Wireless Networks: A Survey," IEEE Commun. Surv. Tutorials, 2023. https://doi.org/10.1109/COMST.2023.3345796 DOI: https://doi.org/10.1109/COMST.2023.3345796
X. Fu, X. Song, P. Pace, G. Aloi, and G. Fortino, "Reinforcement Learning-Based Low-Delay Data Collection in UAV-Assisted IoT for Secondary Geological Hazard Monitoring," IEEE Trans. Veh. Technol., 2025. https://doi.org/10.1109/TVT.2025.3554815 DOI: https://doi.org/10.1109/TVT.2025.3554815
W. Cai, X. Xue, and J. Yang, "Energy-Efficient Trajectory and Resource Optimization for Cognitive IoT-Enabled UAV Aerial Computing in Smart Healthcare Systems," IEEE Internet Things J., 2025. https://doi.org/10.1109/JIOT.2025.3530459 DOI: https://doi.org/10.1109/JIOT.2025.3530459
J. S. Yalli, M. H. Hasan, and A. Badawi, "Internet of things (iot): Origin, embedded technologies, smart applications and its growth in the last decade," IEEE access, 2024.
E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, "Industrial internet of things: Challenges, opportunities, and directions," IEEE Trans. Ind. informatics, vol. 14, no. 11, pp. 4724-4734, 2018. https://doi.org/10.1109/TII.2018.2852491 DOI: https://doi.org/10.1109/TII.2018.2852491
Wójcicki, M. Biegańska, B. Paliwoda, and J. Górna, "Internet of things in industry: research profiling, application, challenges and opportunities-a review," Energies, vol. 15, no. 5, p. 1806, 2022. https://doi.org/10.3390/en15051806 DOI: https://doi.org/10.3390/en15051806
S. A. Hasan, M. A. Mohammed, and S. K. Sulaiman, "Flying Ad-Hoc Networks (FANETs): Review of Communications, Challenges, Applications, Future direction and Open Research Topics," in ITM web of conferences, 2024, vol. 64, p. 1002. https://doi.org/10.1051/itmconf/20246401002 DOI: https://doi.org/10.1051/itmconf/20246401002
S. Abbas, M. Abu Talib, I. Ahmed, and O. Belal, "Integration of UAVs and FANETs in Disaster Management: A Review on Applications, Challenges and Future Directions," Trans. Emerg. Telecommun. Technol., vol. 35, no. 12, p. e70023, 2024. https://doi.org/10.1002/ett.70023 DOI: https://doi.org/10.1002/ett.70023
Nemati, B. Al Homssi, S. Krishnan, J. Park, S. W. Loke, and J. Choi, "Non-terrestrial networks with UAVs: A projection on flying ad-hoc networks," Drones, vol. 6, no. 11, p. 334, 2022. https://doi.org/10.3390/drones6110334 DOI: https://doi.org/10.3390/drones6110334
Q. A. Al-Haija, A. A. Alsulami, and B. Alturki, "Securing the Internet of Flying Things (IoFT): A Proficient Defense Approach," in Proceedings of Ninth International Congress on Information and Communication Technology: ICICT 2024, London, Volume 5, 2024, vol. 5, p. 469. https://doi.org/10.1007/978-981-97-3289-0_38 DOI: https://doi.org/10.1007/978-981-97-3289-0_38
Sezgin and A. Boyacı, "Rising Threats: Privacy and Security Considerations in the IoD Landscape," J. Aeronaut. Sp. Technol., vol. 17, no. Special Issue, pp. 219-235, 2024.
R. G. Nair and K. Narayanan, "Cooperative spectrum sensing in cognitive radio networks using machine learning techniques," Appl. Nanosci., vol. 13, no. 3, pp. 2353-2363, 2023. https://doi.org/10.1007/s13204-021-02261-0 DOI: https://doi.org/10.1007/s13204-021-02261-0
V. H. Mehta, "Enhancing Equipment Reliability and Reducing Maintenance Costs with MSET2: A Predictive Maintenance Approach Using IoT Sensor Data," Available SSRN 4951531, 2023. https://doi.org/10.2139/ssrn.4951531 DOI: https://doi.org/10.2139/ssrn.4951531
X. Zhang, H. Zhao, J. Wei, C. Yan, J. Xiong, and X. Liu, "Cooperative trajectory design of multiple UAV base stations with heterogeneous graph neural networks," IEEE Trans. Wirel. Commun., vol. 22, no. 3, pp. 1495-1509, 2022. https://doi.org/10.1109/TWC.2022.3204794 DOI: https://doi.org/10.1109/TWC.2022.3204794
R. Deepa, R. Karthick, and R. Senthilkumar, "Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm," Comput. Stand. Interfaces, vol. 92, p. 103934, 2025. https://doi.org/10.1016/j.csi.2024.103934 DOI: https://doi.org/10.1016/j.csi.2024.103934
H. Wen, A. M. T. Khel, and K. A. Hamdi, "Effects of co-channel interference on the performance of IRS-assisted communications," IEEE Trans. Veh. Technol., 2024. https://doi.org/10.1109/TVT.2024.3366329 DOI: https://doi.org/10.1109/TVT.2024.3366329
Wang, X. Ma, Z. Wang, and Y. Guo, "Analysis of Co‐Channel Interference in Connected Vehicles WLAN with UAV," Wirel. Commun. Mob. Comput., vol. 2022, no. 1, p. 6045213, 2022. https://doi.org/10.1155/2022/6045213 DOI: https://doi.org/10.1155/2022/6045213
L. Gu and A. Mohajer, "Joint throughput maximization, interference cancellation, and power efficiency for multi-IRS-empowered UAV communications," Signal, Image Video Process., vol. 18, no. 5, pp. 4029-4043, 2024. https://doi.org/10.1007/s11760-024-03015-5 DOI: https://doi.org/10.1007/s11760-024-03015-5
S. Kumari and S. Pandit, "Spectrum monitoring in cognitive radio networks for reduced data loss, resource wastage, and interference," Int. J. Commun. Syst., vol. 38, no. 5, p. e6066, 2025. https://doi.org/10.1002/dac.6066 DOI: https://doi.org/10.1002/dac.6066
F. Huseynov and B. Ozdenizci Kose, "Using machine learning algorithms to predict individuals' tendency to be victim of social engineering attacks," Inf. Dev., vol. 40, no. 2, pp. 298-318, 2024. https://doi.org/10.1177/02666669221116336 DOI: https://doi.org/10.1177/02666669221116336
M. A. S. Mozumder et al., "Optimizing customer segmentation in the banking sector: a comparative analysis of machine learning algorithms," J. Comput. Sci. Technol. Stud., vol. 6, no. 4, pp. 1-7, 2024. https://doi.org/10.32996/jcsts.2024.6.4.1 DOI: https://doi.org/10.32996/jcsts.2024.6.4.1
M. Uko, S. Ekpo, U. Ukommi, U. Iwok, and S. Alabi, "Energy and Spectral Efficiency Analysis for UAV-to-UAV Communication in Dynamic Networks for Smart Cities," Smart Cities, vol. 8, no. 2, p. 54, 2025. https://doi.org/10.3390/smartcities8020054 DOI: https://doi.org/10.3390/smartcities8020054
D. E. Asuquo, U. A. Umoh, S. A. Robinson, E. A. Dan, S. S. Udoh, and K. F. Attai, "Hybrid intelligent system for channel allocation and packet transmission in CR-IoT networks," Int. J. Hybrid Intell. Syst., vol. 20, no. 2, pp. 101-117, 2024. https://doi.org/10.3233/HIS-240009 DOI: https://doi.org/10.3233/HIS-240009
H. Xiao, C. Wu, H. Jiang, L.-P. Deng, Y. Luo, and Q.-Y. Zhang, "Energy-efficient resource allocation in multiple UAVs-assisted energy harvesting-powered two-hop cognitive radio network," IEEE Sens. J., vol. 23, no. 7, pp. 7644-7655, 2023. https://doi.org/10.1109/JSEN.2023.3247436 DOI: https://doi.org/10.1109/JSEN.2023.3247436
J. Huang, B. Wu, Q. Duan, L. Dong, and S. Yu, "A fast UAV trajectory planning framework in RIS-assisted communication systems with accelerated learning via multithreading and federating," IEEE Trans. Mob. Comput., 2025. https://doi.org/10.1109/TMC.2025.3544903 DOI: https://doi.org/10.1109/TMC.2025.3544903
W. M. Othman et al., "Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks," J. Sens. Actuator Networks, vol. 14, no. 2, p. 30, 2025. https://doi.org/10.3390/jsan14020030 DOI: https://doi.org/10.3390/jsan14020030
Al-Rimawi, F. T. Al Rabee, and A. Al-Dweik, "Coverage Probability of RIS-Assisted Wireless Communication Systems with Random User Deployment over Nakagami-$ m $ Fading Channel," IEEE Open J. Veh. Technol., 2025. https://doi.org/10.1109/OJVT.2025.3533081 DOI: https://doi.org/10.1109/OJVT.2025.3533081
Q. Sun, Y. Wu, X. Chen, and J. Zhang, "SLNR-based joint RIS-UE association and beamforming design for multi-RIS aided wireless communications," IEEE Trans. Veh. Technol., vol. 73, no. 6, pp. 8660-8670, 2024. https://doi.org/10.1109/TVT.2024.3362513 DOI: https://doi.org/10.1109/TVT.2024.3362513
S. Zhou, J. Sun, K. Xu, and G. Wang, "AI-Driven Data Processing and Decision Optimization in IoT through Edge Computing and Cloud Architecture," J. AI-Powered Med. Innov. (International online ISSN 3078-1930), vol. 2, no. 1, pp. 64-92, 2024.https://doi.org/10.60087/vol2iisue1.p006 DOI: https://doi.org/10.60087/vol2iisue1.p006
X. Dai, B. Duo, X. Yuan, and W. Tang, "Energy-efficient UAV communications: A generalized propulsion energy consumption model," IEEE Wirel. Commun. Lett., vol. 11, no. 10, pp. 2150-2154, 2022. https://doi.org/10.1109/LWC.2022.3195787 DOI: https://doi.org/10.1109/LWC.2022.3195787
I. Turja, K. N. Sadat, M. M. Hasan, Y. Khan, and M. M. Ehsan, "Waste heat recuperation in advanced supercritical CO2 power cycles with organic rankine cycle integration & optimization using machine learning methods," Int. J. Thermofluids, vol. 22, p. 100612, 2024. https://doi.org/10.1016/j.ijft.2024.100612 DOI: https://doi.org/10.1016/j.ijft.2024.100612
Y. Ge, J. Fan, G. Y. Li, and L.-C. Wang, "Intelligent reflecting surface-enhanced UAV communications: Advances, challenges, and prospects," IEEE Wirel. Commun., vol. 30, no. 6, pp. 119-126, 2023. https://doi.org/10.1109/MWC.008.2200124 DOI: https://doi.org/10.1109/MWC.008.2200124
S. A. H. Mohsan, M. A. Khan, M. H. Alsharif, P. Uthansakul, and A. A. A. Solyman, "Intelligent reflecting surfaces assisted UAV communications for massive networks: current trends, challenges, and research directions," Sensors, vol. 22, no. 14, p. 5278, 2022. https://doi.org/10.3390/s22145278 DOI: https://doi.org/10.3390/s22145278
B. Sahana, D. Prabhakar, C. S. Meghana, and B. Sadhana, "Edge Computing for Analysis in Health Care Industry using 5G Technology," in The Role of Network Security and 5G Communication in Smart Cities and Industrial Transformation, Bentham Science Publishers, 2025, pp. 147-166. https://doi.org/10.2174/9789815305876125010009 DOI: https://doi.org/10.2174/9789815305876125010009
B. Simon, P. Adrian, P. Weber, P. Felka, O. Hinz, and A. Klein, "A Bargaining Approach for Service Placement in Multi-Access Edge Computing with Information Asymmetries," IEEE Trans. Mob. Comput., 2025. https://doi.org/10.1109/TMC.2025.3533045 DOI: https://doi.org/10.1109/TMC.2025.3533045
S. Jahandar, I. Shayea, E. Gures, A. A. El-Saleh, M. Ergen, and M. Alnakhli, "Handover Decision with Multi-Access Edge Computing in 6G Networks: A Survey," Results Eng., p. 103934, 2025. https://doi.org/10.1016/j.rineng.2025.103934 DOI: https://doi.org/10.1016/j.rineng.2025.103934
A. AL-Bakhrani, M. Li, M. S. Obaidat, and G. A. Amran, "MOALF-UAV-MEC: Adaptive Multi-Objective Optimization for UAV-Assisted Mobile Edge Computing in Dynamic IoT Environments," IEEE Internet Things J., 2025. https://doi.org/10.1109/JIOT.2025.3544624 DOI: https://doi.org/10.1109/JIOT.2025.3544624
F. M. Alotaibi, L. A. Maghrabi, M. Tanveer, M. Ahmad, and Q. H. Naith, "RAP-MEC: Robust authentication protocol for the mobile edge computing services," IEEE Access, 2024.
Y. Y. Ghadi, S. F. A. Shah, T. Mazhar, T. Shahzad, K. Ouahada, and H. Hamam, "Enhancing patient healthcare with mobile edge computing and 5G: challenges and solutions for secure online health tools," J. Cloud Comput., vol. 13, no. 1, p. 93, 2024. https://doi.org/10.1186/s13677-024-00654-4 DOI: https://doi.org/10.1186/s13677-024-00654-4
M. K. Mondal, S. Banerjee, D. Das, U. Ghosh, M. S. Al-Numay, and U. Biswas, "Toward energy-efficient and cost-effective task offloading in mobile edge computing for intelligent surveillance systems," IEEE Trans. Consum. Electron., vol. 70, no. 1, pp. 4087-4094, 2024. https://doi.org/10.1109/TCE.2024.3362396 DOI: https://doi.org/10.1109/TCE.2024.3362396
H. Pang and Z. Wang, "Dueling double deep Q network strategy in MEC for smart internet of vehicles edge computing networks," J. Grid Comput., vol. 22, no. 1, p. 37, 2024. https://doi.org/10.1007/s10723-024-09752-8 DOI: https://doi.org/10.1007/s10723-024-09752-8
X. Tang, T. Tang, Z. Shen, H. Zheng, and W. Ding, "Double deep Q-network-based dynamic offloading decision-making for mobile edge computing with regular hexagonal deployment structure of servers," Appl. Soft Comput., vol. 169, p. 112594, 2025. https://doi.org/10.1016/j.asoc.2024.112594 DOI: https://doi.org/10.1016/j.asoc.2024.112594
M. Y. Akhlaqi and Z. B. M. Hanapi, "Task offloading paradigm in mobile edge computing-current issues, adopted approaches, and future directions," J. Netw. Comput. Appl., vol. 212, p. 103568, 2023. https://doi.org/10.1016/j.jnca.2022.103568 DOI: https://doi.org/10.1016/j.jnca.2022.103568
F. Zhao, H. Song, and Z. Liu, "Identification and analysis of key technical elements and prospects for software-defined vehicles," SAE Technical Paper, 2022. https://doi.org/10.4271/2022-01-7002 DOI: https://doi.org/10.4271/2022-01-7002
J. Gu, J. Feng, H. Xu, and T. Zhou, "Research on terminal-side computing force network based on massive terminals," Electronics, vol. 11, no. 13, p. 2108, 2022. https://doi.org/10.3390/electronics11132108 DOI: https://doi.org/10.3390/electronics11132108
Alshahrani, "Toward 6G: Latency-Optimized MEC Systems with UAV and RIS Integration.," Math., vol. 13, no. 5, 2025. https://doi.org/10.3390/math13050871 DOI: https://doi.org/10.3390/math13050871
E. Basar et al., "Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges," IEEE Veh. Technol. Mag., 2024. https://doi.org/10.1109/MVT.2024.3415570 DOI: https://doi.org/10.1109/MVT.2024.3415570
Y. Zhang, "A Comprehensive Review of Energy-Efficient Techniques for," 2024. https://doi.org/10.3390/en17184737 DOI: https://doi.org/10.3390/en17184737
M. Ahmed et al., "Advancements in RIS-Assisted UAV for Empowering Multi-Access Edge Computing: A Survey," IEEE Internet Things J., 2025. https://doi.org/10.1109/JIOT.2025.3527041 DOI: https://doi.org/10.1109/JIOT.2025.3527041
Q. Liu, J. Han, and Q. Liu, "Joint task offloading and resource allocation for RIS-assisted UAV for mobile edge computing networks," in 2023 IEEE/CIC International Conference on Communications in China (ICCC), 2023, pp. 1-6. https://doi.org/10.1109/ICCC57788.2023.10233361 DOI: https://doi.org/10.1109/ICCC57788.2023.10233361
Q. Truong et al., "Computation Offloading and Resource Allocation Optimisation for Mobile Edge Computing-aided UAV-RIS Communications," IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3435483 DOI: https://doi.org/10.1109/ACCESS.2024.3435483
C. Pogaku, D.-T. Do, B. M. Lee, and N. D. Nguyen, "UAV-assisted RIS for future wireless communications: A survey on optimization and performance analysis," IEEE Access, vol. 10, pp. 16320-16336, 2022. https://doi.org/10.1109/ACCESS.2022.3149054 DOI: https://doi.org/10.1109/ACCESS.2022.3149054
M. O. T. Abualhayja'a, "Beamforming and optimisation of RIS-assisted UAV communication systems." University of Glasgow, 2024.
L. Zhai, Y. Zou, J. Zhu, and Y. Jiang, "RIS-assisted UAV-enabled wireless powered communications: System modeling and optimization," IEEE Trans. Wirel. Commun., vol. 23, no. 5, pp. 5094-5108, 2023. https://doi.org/10.1109/TWC.2023.3324500 DOI: https://doi.org/10.1109/TWC.2023.3324500
E. T. Michailidis, N. I. Miridakis, A. Michalas, E. Skondras, and D. J. Vergados, "Internet of Vehicles," pp. 1-24, 2021.
X. Qin, Z. Song, T. Hou, W. Yu, J. Wang, and X. Sun, "Joint optimization of resource allocation, phase shift, and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems," IEEE Trans. Green Commun. Netw., vol. 7, no. 4, pp. 1778-1792, 2023. https://doi.org/10.1109/TGCN.2023.3287604 DOI: https://doi.org/10.1109/TGCN.2023.3287604
M. Ahmed et al., "A survey on reconfigurable intelligent surfaces assisted multi-access edge computing networks: State of the art and future challenges," Comput. Sci. Rev., vol. 54, p. 100668, 2024. https://doi.org/10.1016/j.cosrev.2024.100668 DOI: https://doi.org/10.1016/j.cosrev.2024.100668
J. Kim, E. Hong, J. Jung, J. Kang, and S. Jeong, "Energy minimization in reconfigurable intelligent surface-assisted unmanned aerial vehicle-enabled wireless powered mobile edge computing systems with rate-splitting multiple access," Drones, vol. 7, no. 12, p. 688, 2023. https://doi.org/10.3390/drones7120688 DOI: https://doi.org/10.3390/drones7120688
X. Deng et al., "Energy-Efficient Strategic UAV-Enabled MEC Networks via STAR-RIS: Joint Optimization of Trajectory and User Association," IEEE Internet Things J., 2025. https://doi.org/10.1109/JIOT.2025.3527002 DOI: https://doi.org/10.1109/JIOT.2025.3527002
L. Dong, M. Lu, Y. Wu, X. Li, Y. Wu, and X. Yuan, "RIS-Assisted Energy-Efficient UAV Data Collection Method Based on Deep Reinforcement Learning," Mob. Networks Appl., pp. 1-11, 2025.https://doi.org/10.1007/s11036-025-02450-z DOI: https://doi.org/10.1007/s11036-025-02450-z
T. L. Nguyen, G. Kaddoum, T. N. Do, and Z. J. Haas, "Ground-to-UAV and RIS-assisted UAV-to-ground communication under channel aging: Statistical characterization and outage performance," IEEE Trans. Commun., 2025. https://doi.org/10.1109/TCOMM.2025.3543216 DOI: https://doi.org/10.1109/TCOMM.2025.3543216
M. Ahmed et al., "RIS-Driven Resource Allocation Strategies for Diverse Network Environments: A Comprehensive Review," arXiv Prepr. arXiv2501.03075, 2025. https://doi.org/10.1002/ett.70160 DOI: https://doi.org/10.1002/ett.70160
E. T. Michailidis, M.-G. Volakaki, N. I. Miridakis, and D. Vouyioukas, "Optimization of secure computation efficiency in UAV-enabled RIS-assisted MEC-IoT networks with aerial and ground eavesdroppers," IEEE Trans. Commun., 2024. https://doi.org/10.1109/TCOMM.2024.3372877 DOI: https://doi.org/10.1109/TCOMM.2024.3372877
B. A. Tesfaw, R.-T. Juang, H.-P. Lin, G. B. Tarekegn, and W. N. Kabore, "Multi-Agent Deep Reinforcement Learning Based Optimizing Joint 3D Trajectories and Phase Shifts in RIS-Assisted UAV-Enabled Wireless Communications," IEEE Open J. Veh. Technol., 2024. https://doi.org/10.1109/OJVT.2024.3486197 DOI: https://doi.org/10.1109/OJVT.2024.3486197
M. Eskandari and A. V Savkin, "Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications," Futur. Internet, vol. 16, no. 12, p. 433, 2024. https://doi.org/10.3390/fi16120433 DOI: https://doi.org/10.3390/fi16120433
Y. Mao et al., "A high-capacity MAC protocol for UAV-enhanced RIS-assisted V2X architecture in 3-D IoT traffic," IEEE Internet Things J., vol. 11, no. 13, pp. 23711-23726, 2024. https://doi.org/10.1109/JIOT.2024.3387997 DOI: https://doi.org/10.1109/JIOT.2024.3387997
Sharma, S. Chaudhary, and A. Parnianifard, "Introduction to Advances in Optical and Wireless Communication," Opt. Wirel. Commun. Appl. Mach. Learn. Artif. Intell., p. 1, 2025. https://doi.org/10.1201/9781003472506-1 DOI: https://doi.org/10.1201/9781003472506-1
X. Shen, L. Gu, J. Yang, and S. Shen, "Energy Efficiency Optimization for UAV-RIS-Assisted Wireless Powered Communication Networks," Drones, vol. 9, no. 5, p. 344, 2025. https://doi.org/10.3390/drones9050344 DOI: https://doi.org/10.3390/drones9050344
Z. Wang, J. Wen, J. He, L. Yu, and Z. Li, "Energy Efficiency Optimization of RIS-Assisted UAV Search-Based Cognitive Communication in Complex Obstacle Avoidance Environments," IEEE Trans. Cogn. Commun. Netw., 2025. https://doi.org/10.1109/TCCN.2025.3544267 DOI: https://doi.org/10.1109/TCCN.2025.3544267
N. Trabelsi and L. Chaari Fourati, "A Brief Review of Machine Learning-Based Approaches for Advanced Interference Management in 6G In-X Sub-networks," in International Conference on Advanced Information Networking and Applications, 2024, pp. 475-487. https://doi.org/10.1007/978-3-031-57942-4_46 DOI: https://doi.org/10.1007/978-3-031-57942-4_46
V. Balogun, X. Paquette, and O. A. Sarumi, "Secure Risk Management Approach for Enhancing the Performance of Cloud-based Cooperative Spectrum Sensing CRNs," in 2024 22nd International Symposium on Network Computing and Applications (NCA), 2024, pp. 172-176. https://doi.org/10.1109/NCA61908.2024.00035 DOI: https://doi.org/10.1109/NCA61908.2024.00035
R. Gupta, M. Aggarwal, and S. Ahuja, "A novel strategy to enhance the quality of service (QoS) for data center traffic in elastic optical networks," J. Opt. Commun., vol. 45, no. 3, pp. 569-580, 2024. https://doi.org/10.1515/joc-2021-0183 DOI: https://doi.org/10.1515/joc-2021-0183
M. Katwe, K. Singh, P. K. Sharma, and C.-P. Li, "Energy efficiency maximization for UAV-assisted full-duplex NOMA system: User clustering and resource allocation," IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 992-1008, 2021. https://doi.org/10.1109/TGCN.2021.3134642 DOI: https://doi.org/10.1109/TGCN.2021.3134642
M. Ahmed et al., "A survey on STAR-RIS: Use cases, recent advances, and future research challenges," IEEE Internet Things J., vol. 10, no. 16, pp. 14689-14711, 2023. https://doi.org/10.1109/JIOT.2023.3279357 DOI: https://doi.org/10.1109/JIOT.2023.3279357
L. Qu, A. Huang, J. Pan, C. Dai, S. Garg, and M. M. Hassan, "Deep Reinforcement Learning‐Based Multireconfigurable Intelligent Surface for MEC Offloading," Int. J. Intell. Syst., vol. 2024, no. 1, p. 2960447, 2024. https://doi.org/10.1155/2024/2960447 DOI: https://doi.org/10.1155/2024/2960447
X. Qin, Z. Song, T. Hou, W. Yu, J. Wang, and X. Sun, "Joint resource allocation and configuration design for STAR-RIS-enhanced wireless-powered MEC," IEEE Trans. Commun., vol. 71, no. 4, pp. 2381-2395, 2023. https://doi.org/10.1109/TCOMM.2023.3241176 DOI: https://doi.org/10.1109/TCOMM.2023.3241176
D. Thanh, H. T. H. Giang, and I.-P. Hong, "RIS-assisted CR-MEC Systems using Deep Reinforcement Learning Approach," IEEE Access, 2024. https://doi.org/10.1109/ACCESS.2024.3522783 DOI: https://doi.org/10.1109/ACCESS.2024.3522783
Kaur, B. Bansal, S. Majhi, S. Jain, C. Huang, and C. Yuen, "A survey on reconfigurable intelligent surface for physical layer security of next-generation wireless communications," IEEE open J. Veh. Technol., vol. 5, pp. 172-199, 2024. https://doi.org/10.1109/OJVT.2023.3348658 DOI: https://doi.org/10.1109/OJVT.2023.3348658
K. Das et al., "Comprehensive review on ML-based RIS-enhanced IoT systems: basics, research progress and future challenges," Comput. Networks, vol. 224, p. 109581, 2023. https://doi.org/10.1016/j.comnet.2023.109581 DOI: https://doi.org/10.1016/j.comnet.2023.109581
Downloads
Published
Issue
Section
License
Copyright (c) 2025 AlamBiblilo Publishers

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The Asian Journal of Electrical and Electronic Engineering journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




