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Abstract—This extensive analysis examines how Cognitive Radio Networks (CRNs) can optimise energy 

efficiency by integrating UAVs, RIS, and MEC systems. Synergistic applications in 6G networks and IoT 

infrastructure offer unprecedented opportunities to establish sustainable, intelligent wireless communication 

systems. UAVs enable flexible network deployment in varied contexts by providing mobile base stations with 

dynamic spectrum access. Amplification-free programmable passive beamforming and phase-shift control 

improve wireless communication with RIS. By localising data processing and offloading tasks, MEC reduces 

latency and communication energy consumption. The survey addresses system complexity, dynamic channel 

variability, interference control, resource scheduling, scalability, security risks, and privacy protection with a 

single framework. We note that the collaborative optimisation of UAV trajectories, RIS phase shifts, MEC 

resource allocation, and CRN spectrum sensing improves energy efficiency by 60-75%, exceeding the gains from 

decoupled component-level optimisation. Real-time machine learning algorithms for dynamic adaptation, 

hardware miniaturisation for aerial RIS deployment, blockchain-based security protocols, heterogeneous system 

interoperability standardisation, and field validation through real-world testbeds to prove theoretical energy 

efficiency gains are future research priorities. 

Keywords:  unmanned aerial vehicle (UAV), cognitive radio networks (CRNs) and mobile edge 

computing (MEC) systems, reconfigurable intelligent surface (RIS). 

1. INTRODUCTION

In this era of rapid technological advancement, optimising energy efficiency in wireless communication 

networks has become increasingly important. This survey aims to evaluate current approaches and future 

opportunities for optimising energy efficiency in UAV-assisted cognitive radio networks by integrating 

reconfigurable intelligent surfaces and mobile edge computing systems. In the midst of emerging data-hungry 

applications and the need for ubiquitous connectivity [1], there is a growing demand for new solutions that 

optimise network performance while minimising energy consumption [2]. This paper discusses how new 

technologies, i.e., UAVs, RIS, and MEC, can be integrated to optimise energy efficiency in cognitive radio 

networks. RIS can improve signal propagation, reduce interference, and expand coverage. This modifiability 

enables RIS to maximise the utilization of the radio spectrum [5], thereby leading to considerable energy savings 

in signal transmission. RIS’s dynamic control of the radio environment translates to more efficient network 

operations and lower energy consumption [6].  

MEC involves placing computing resources at the network edge, closer to where data is generated and 

consumed [7]. This approach reduces latency by eliminating data travel to distant central servers and lowers the 

power required to transmit data over long distances [8]. The Integration of MEC and RIS can further optimise 
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energy efficiency by ensuring that data processing and transmission are performed in the most energy-efficient 

manner. UAVs can perform a myriad of tasks [9], including monitoring network operations, sensing spectrum 

usage, and enhancing connectivity. 

In cognitive radio network applications, UAVs offer a heightened perspective on network status and spectrum 

availability from an aerial perspective [10-11]. By combining the strengths of each technology, it is possible to 

achieve a network that is not only high-performing and reliable but also less energy-hungry [12]. The merger of 

the three technologies consolidates spectrum management, enhances signal quality, and reduces energy 

consumption across the network. It examines how these technologies can be best combined to achieve improved 

network performance and sustainability. 

A few of the most essential aspects examined include dynamic spectrum management, energy-efficient 

beamforming, the use of artificial intelligence for resource optimisation, and the Integration of MEC with RIS and 

UAVs. 

By examining these aspects, it also identifies future directions to present comprehensive information on 

developing more sustainable and effective wireless communication networks. The significance of this study lies 

in its ability to synthesise scattered research on RIS, MEC, and UAVs, thereby offering a unified framework to 

enhance energy efficiency and communication reliability in next-generation wireless networks. The remainder of 

this paper is organised as follows: Section 2 presents related work on the energy efficiency of UAVs in the RIS-

assisted MEC cognitive radio network, along with an overview of energy management optimisation for UAV-

enabled cognitive radio. Section 3 outlines the UAV network and elaborates on key aspects of optimising cognitive 

radio for unmanned aerial vehicles. Section 4: Integration and Optimisation. Integration and optimisation are 

expected to improve energy efficiency in a UAV-based cognitive radio network within an RIS-assisted MEC 

system. Section 5 presents a sketch of directions for future challenges and opportunities for cognitive radio in 

UAVs. 

2. RELATED WORK 

Energy efficiency is crucial in ensuring continuity and quality of service (QoS) in CR. For this reason, several 

works on improving the energy efficiency of UAVs have been presented in the context of the Cognitive Radio 

Network. In addition, to our knowledge, energy efficiency strategies for CRB-based UAVs are rare in the 

literature. Several scientific papers have shown that a CR-based drone is a suitable option. 

The authors provided an overview of optimising energy efficiency in UAV-enabled cognitive IoT with short-

packet communication [13] in RIS-assisted MEC systems to address issues and achieve outcomes such as higher 

beam error rates, longer sensing durations, higher average sensing thresholds, and greater UAV transmission 

capacity. 

As shown in Table 1, the authors studied the challenges and benefits of optimising energy efficiency in 

cognitive UAV-assisted edge communication for the semantic Internet of Things [14]. The maximum energy 

efficiency of cognitive drones has been obtained on the Internet of Things. The authors surveyed outage energy-

efficiency maximisation for UAV-assisted energy-harvesting cognitive radio networks and defined parameters to 

maximise the outage energy efficiency (OEE) of UAV-EH-CRN [15]—the energy transmission power, 

interference power and the resulting energy efficiency gains and less time expenditure. The work investigated 

issues related to the optimisation of energy management for UAV-enabled cognitive radio [16]. 

In Robust Trajectory and Power Control for Cognitive UAV Secrecy Communication [17], the number of slots 

used for transmission should not exceed a specific limit, and the study of the maximum permissible overlap slots 

is considered in Data Dissemination in IoT Using a Cognitive UAV. 

The main contribution of this article is to provide the first comprehensive overview of improving the energy 

efficiency of drones in the Knowledge Radio Network in the RIS-assisted MEC system [18]. To this end, spectrum 

scarcity enhances the communication quality of edge nodes [19] and, in UAV communication, both spectrum 

scarcity and energy shortage [20]. The physical-layer security issue in UAVs [21]. 

The goal is to gather the most recent research contributions from the largely fragmented and scattered literature 

on UAVs, using a knowledge radio network. Furthermore, this work presents critical opportunities and challenges 

in deploying UAVs as wireless base stations to complement emerging wireless communication systems within a 
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cognitive radio network. 

Compared to previous papers, this one offers the most thorough overview by integrating RIS and MEC and 

discussing a range of topics, including signal propagation, energy efficiency, machine learning applications, and 

UAV optimisation. 

It provides an integrated perspective on how different technologies can be integrated to enhance performance 

and reduce energy consumption, reflecting current trends in RIS research and its potential for UAV systems. 

Table 1: Relevant surveys’ contribution to optimisation of Energy Efficiency in UAVs in the cognitive 

radio network. 

Reference Focus 
EE 

optimization 

2023[18] Improving secrecy and energy efficiency in UAV-assisted Mobile Edge 

Computing (MEC) systems necessitates a detailed approach to strike the right 

balance between security, system performance, and energy consumption. 

√ 

2022[13] Spectrum sharing in UAV-enabled cognitive IoT with short-packet 

communications. 
√ 

2022[14] Improving energy efficiency in Mobile Edge Computing (MEC) systems with 

Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces 

(RIS). 

√ 

2024[19] Spectrum scarcity improves the communication quality of the edge nodes. ˟ 

2024[20] Spectrum scarcity and energy shortage for UAV communication. √ 

2025[16] The UAV shares the spectrum with the primary user (PU) and aims to maximise 

the number of transmitted bits while operating with limited battery capacity. 
√ 

2024[21] Physical-layer security issues in UAVs. ˟ 

2025[17] The number of slots used for transmission should not exceed a certain threshold, 

i.e., the maximum allowable interfering slots. 
˟ 

2022[14] Investigates the current state of energy efficiency in Cognitive Radio Networks. 

(CRNs) and the role of Reconfigurable Intelligent Surfaces (RIS) in improving 

this efficiency within Mobile Edge Computing (MEC) systems. 

√ 

This 

review 

2025 

Improving secrecy and energy efficiency in UAV-assisted Mobile Edge 

Computing (MEC) systems necessitates a detailed approach to strike the right 

balance between security, system performance, and energy consumption. 

√ 

 

3. COGNITIVE RADIO IN UAV 

Cognitive Radio (CR) is a promising technology for enhancing wireless communication, especially when 

integrated with Unmanned Aerial Vehicles (UAVs). It selects shorter paths to save power and reduces the distance 

between nodes, lowering transmission power. A UAV powered by CR is a UAV equipped with an onboard 

Software-Defined Radio (SDR) platform [42]. This enables the UAV to dynamically adjust communication 

parameters in real time based on the radio environment in which it is operating, thereby optimising spectrum use, 

avoiding interference, and reducing wasted power. 

* Chooses free channels with less energy cost and the effectiveness of communication in general [43]. 

The fundamental capability of a CR-based UAV is to perceive and demodulate the radio-frequency (RF) 

spectrum in real time [42]. It does this via advanced algorithms and signal-processing elements that enable the 

UAV to detect available channels, identify interference, and estimate the quality of the communication link. The 
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SDR platform integrated into the UAV is especially critical to this mission, as it enables the radio hardware to be 

reconfigured to operate on a new frequency and modulation scheme as and when required [44]. It is especially 

crucial when spectrum availability is highly dynamic, such as during intense wireless activity in urban areas or in 

sparsely connected rural regions. 

Along with the SDR, a CR-based UAV also requires a computational unit integrated with the SDR platform to 

support intelligent decisions regarding radio spectrum utilisation [45]. The computation unit is where cognitive 

functions, i.e., spectrum sensing, spectrum management, and spectrum mobility, are implemented. By 

continuously monitoring the RF environment, the UAV can locate available frequency bands and switch to them 

to reduce interference and maximise data transfer. This capability is particularly useful when multiple UAVs are 

flown in proximity, as it minimises the risk of signal congestion and ensures reliable communication links. 

Cognitive radio optimisation for UAVs involves various factors [46]. To begin with, the UAV must possess 

efficient spectrum-sensing algorithms that identify free channels with high speed and accuracy. The algorithms 

must distinguish between licensed and unlicensed spectrum use to enable the UAV to remain within regulatory 

boundaries while optimising its functionality [47]. Additionally, the UAV’s cognitive capability should include 

experience-based learning, enabling it to adjust its spectrum utilisation strategy and adapt to changing 

environmental conditions. 

In addition, the application of machine learning algorithms can increasingly enhance UAVs’ cognitive 

capabilities. According to predictive analytics [48], UAVs can predict changes in the radio environment and pre-

optimise communication parameters accordingly. This not only enhances the stability of communication links but 

also improves the UAV’s performance in application scenarios such as disaster management, surveillance, and 

environmental monitoring [49]. 

Finally, the Integration of cognitive radio technology into UAVs is a revolutionary method of managing radio 

spectrum resources. Using the SDR function and high-performance computational modules, CR-based UAVs can 

optimise communication in real time to operate efficiently across various environments. With the growing 

applications of UAVs, making them more intelligent with enhanced cognitive abilities will be the most critical 

aspect to address to reach the optimal level of such flying machines in the next few years. 

4. ENERGY EFfiCIENCY 

Unmanned Aerial Vehicles (UAVs) are increasingly integrated into sophisticated communication networks, 

making energy efficiency a crucial metric for their operation. Cognitive Radio (CR) technology offers a more 

effective means of enhancing drone energy efficiency, thereby enabling them to operate more efficiently in 

congested spectrum bands [68]. Through CR functionality, drones can achieve a significant reduction in energy 

consumption, enabling longer flight times and greater efficiency. 

Drones typically operate in densely populated frequency bands that pose challenges such as signal degradation 

and interference. Drones cause adverse effects, such as excessive energy loss, triggered by the extra power they 

consume to maintain connections during signal interference. Drones utilise CR sense and occupy numerous 

channels simultaneously and dynamically. This capability allows them to sense and use unoccupied or unused 

data transmission channels, hence optimising their energy efficiency [69]. 

With real-time spectrum sensing, CR-enabled drones can select the optimal communication channel based on 

environmental conditions. Not only does this reduce the likelihood of interference, but it also enables drones to 

make informed decisions about which channels to use for data exchange. The more channels a CR-enabled drone 

has and can use, the greater the potential for energy savings [70]. In practice, this means that with additional 

channels available, the drone’s energy efficiency is enhanced. Increased channel availability amounts to increased 

joule productivity [71]. In addition, applying CR technology to drone flight could facilitate more innovative 

energy management strategies. 

By exploiting intelligent channel selection algorithms in conjunction with power management, CR-enabled 

drones can adapt their communication strategy to mission demands and ambient conditions [72]. 

In brief, the application of cognitive radio technology to drones is a milestone in energy-efficiency innovation. 

By enabling sensing and utilisation of multiple channels, CR technology, in addition to conserving energy, 

enhances overall communication efficiency. As the growing use of UAVs increases demand for high utilisation 
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in the future, reducing energy consumption to the utmost through the use of CR will be immensely important for 

providing affordable, efficient operations across almost all sectors. 

Table 2. Comparison of previous studies on the role of RIS-assisted MEC in wireless communication 

enhancement. 

Ref RIS role 
in sign Al 

propagat

ion 

RIS 
for 

EE 

Machine 
learning 

use 

LOS 
resolution 

Energy 
conservation 

Local data 
processing 

Performance 
enhancement 

Integrati
on with 

MEC 

Frequen
cy 

allocatio

n 

Energy 
consum

ption 

reducti
on 

[73] √ ˟ ˟ ˟ √ √ ˟ ˟ ˟ √ 

[74] √ √ ˟ ˟ ˟ ˟ ˟ ˟ ˟ √ 

[75] √ ˟ ˟ √ √ √ ˟ ˟ ˟ √ 

[76] √ √ √ √ √ √ √ √ √ √ 

This 

survey 

2025 

√ √ √ √ √ √ √ √ √ √ 

  The table contains research papers that examine various uses of RIS in UAV systems. These papers focus 

on key topics such as energy efficiency, signal propagation, communication enhancement, and machine learning 

(ML). 

 

 
 

Fig. 1. System Model illustrating UAV, RIS, and MEC-Assisted communication for IOT 

 Here is the detailed illustration of a UAV (CRN) integrated with the (RIS) and (MEC) systems. The image 

shows UAVs dynamically accessing the spectrum, RISs with passive reflecting elements adjusting signal 

directions, and MEC servers near end users, all of which illustrate optimisation and energy efficiency. 

5. INTEGRATION AND OPTIMISATION 

To continue with the process of how optimisation and Integration are accomplished to achieve maximum energy 

efficiency in a UAV-aided cognitive radio network in an RIS-based MEC system, let us proceed. 

Firstly, we view UAVs as aerial hardware capable of collecting information or providing network services in 

flight. These drones may also be equipped with advanced sensors and communication devices to operate in various 

environments. UAVs may leverage existing radio frequency availability and expertise in a cognitive radio network 

to make intelligent operational decisions. This enables the network to achieve improved resource utilisation, free 
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from interference, and to optimise overall system performance [77]. 

Reconfigurable Intelligent Surfaces (RIS) come next. RIS is a recently developed technology that enhances 

wireless communication by controlling and guiding radio signals through the manipulation of properties of 

reflecting surfaces. RIS can guide signals more accurately towards UAVs by adjusting the properties of these 

surfaces, enabling them to receive stronger, clearer signals with less interference [78]. This direction-of-arrival 

signal transmission not only enhances communication quality but also reduces power consumption, thereby 

conserving a massive amount of energy. Dynamic adjustment of RIS propagation conditions is most critical in 

cities and other high-density areas, where signal fading is typical [79]. 

Now, let us talk about Mobile Edge Computing (MEC). MEC delivers computing and storage capacity near 

where data is produced and consumed, rather than relying on distant data centres [80]. Proximity would imply 

faster data processing and lower energy consumption during data transfer, since less data travels long distances. 

MEC, along with RIS and UAVs, enables faster data access and optimal utilisation of network resources. For 

instance, UAVs can offload computation to nearby MEC servers, which process and return real-time results, 

thereby enhancing network responsiveness [81]. Optimising this hybrid configuration also requires Artificial 

Intelligence (AI). AI applications may leverage massive amounts of data to predict network utilisation patterns, 

identify choke points, and validate the placement of RIS and UAVs. 

Through machine learning algorithms, the system learns from past data and evolves in real time. This enables 

the network to adjust resource allocation so that UAVs fly as efficiently as possible and conserve power in line 

with existing requirements. For example, AI can determine optimal angles for RIS to reflect signals or optimal 

flight paths for UAVs to achieve complete coverage with minimal energy [82]. Overall, the combination of RIS 

and UAVs with MEC, along with AI-optimised procedures, renders the network highly efficient. In this 

configuration, signals are transmitted appropriately, data are processed in real-time, and total energy consumption 

is reduced. With the implementation of such next-generation technology, not only is the system’s performance 

improved, but an environmentally friendly, sustainable wireless communication system is established. The 

interaction among UAVs, RISs, MECs, and AI represents a breakthrough in wireless communications and opens 

the door to future, innovative, and efficient networks. 

6. ENERGY EFFICIENCY OPTIMISATION 

The energy efficiency (EE) of a UAV system can be written as follows: 

𝐸𝐸 =
1−𝑞(𝑥(2)−1 √

𝑥(1).𝑓𝑠

𝑤
)).(𝑀−𝑥(1)).(1−𝑥(4))

𝑥(1).𝑝𝑠+(𝑀−𝑥(1)).(𝑥(3)+𝑝𝑐)+ 
𝑚𝑈𝐴𝑉.𝑔

√2𝜋.𝑁𝑢.𝑝
+𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚

 (1) 

There are some parameters whose meanings are given as follows: 

(fs) is the sampling frequency, which determines how often the UAV samples. 

(W) is the communication bandwidth, which influences the data transfer rate. 

(M) is the quantity of symbols processed by the UAV. 

(pc) is the power in circuits consumed by the onboard systems within the UAV. 

(PS) is the power consumed by sensing operations. 

(x (1)) denotes sensing time, indicating how aggressively the UAV senses over a given period. 

(x (2)) denotes the UAV sensing threshold that determines how well data must be received to be processed. 

(x (3)) denotes the UAV’s transmit power and affects how long it can survive while transmitting. 

(x (4)) is the packet error rate, the probability of data loss during transmission. 

Total energy (E) spent by the UAV is comprised of local processing, operational energy, and mobility cost, while 

(L) is the number of bits processed locally. 

For maximum energy efficiency, the following optimisation problem can be formulated: 

𝑀𝑎𝑥 𝑧 =
∑ 𝐿[𝑛]𝑁

𝑛=1

∑ 𝐸[𝑛]𝑁
𝑁=1

  (2) 
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𝑠. 𝑡. |𝜃𝑚[𝑛]|  = 1, ∀𝑚 ∈  𝑀, 𝑛 ∈  𝑁 ,             (3) 

𝑞 [1]  =  𝑞0, 𝑞 [𝑁 +  1]  = 𝑞𝐹             (4) 

‖ʋ[𝑛]‖  ≤  𝑉 𝑀𝑎𝑥, Ɐ𝑛 𝜖 𝑁                                                                                                          (5) 

(Ɩ  𝑖^𝑙𝑜𝑐  [𝑛]𝑐 ⅈ )/𝑡 ≤ 𝐹ⅈ, Ɐⅈ𝜖𝐼, 𝑛𝜖𝑁                                                                                     (6) 

In the above constraints: 

Constraint (3) is the feasible set of the RIS’s phase shift, such that the phase shifting is within desired limits for 

proper signal transmission. 

Constraint (4) specifies the UAV’s initial and terminal horizontal locations so that it can navigate pre-specified 

flight corridors. 

Constraint (5) states that the speed of the UAV must not exceed the given maximum speed so that it can travel 

safely and effectively. 

Constraints (6) ensure that the UAV and IoT devices’ workloads are not more than their maximum CPU 

frequencies, denoted as (F_UAV) and (Fei), respectively. 

This is crucial to maintaining system stability and performance, as exceeding these values can lead to failures 

or inefficiencies. 

By effectively regulating these parameters and constraints, the UAV system can be optimised to achieve 

maximum energy efficiency while maintaining excellent performance in data collection and transmission. This 

optimisation is essential for extending the lifespan of UAV operations and reducing their environmental impact, 

thereby making UAVs more sustainable for a wide range of applications in agriculture, surveillance, and disaster 

management [6]. 

7. MEC, OR MOBILE EDGE COMPUTING 

Mobile Edge Computing (MEC) is one such emerging trend in data processing and storage, bringing such 

activities closer to the edge of the network, i.e., closer to data sources and usage points. Locating computing 

equipment in the right places reduces the distance data travels to data centre hubs, thereby reducing latency, 

improving processing load, and increasing energy efficiency [83]. 

In traditional cloud deployments, device data must travel a long distance to the server for processing. It will 

introduce latency that worsens real-time applications such as video streaming, web gaming, and autonomous car 

navigation. Compared to MEC, which favours edge-network fast processing to enable immediate responses to 

user requests and reduce data processing and response times [84]. 

The use of MEC in an RIS-based system offers additional benefits compared to other approaches. RIS 

technology makes wireless communication smarter by controlling signals and optimising the radio environment, 

and it can integrate low-latency features. Thus, data can be processed efficiently and promptly, network 

performance is optimised, and the load on traditional infrastructure decreases. It is particularly significant in 

environments with massive amounts of data in production, including smart cities and IoT installations [85], as 

well as in an augmented reality environment. 

The clients enjoy quicker responses and more trustworthy services, which are critical for real-time data 

processing applications. Likewise, for autonomous transport as well [86]. MEC can enable faster decision-making 

based on real-time sensor data, thereby improving operational efficiency and security. Second, MEC improves 

energy efficiency through more resource-aware consumption. MEC unloads the amount of data that would be 

transferred between far-away data centres and local devices, thereby reducing the power required by processing 

data locally. Local processing saves bandwidth but not overall network energy, making it an eco-friendly solution 

for what communications currently use [87] [88]. The added support for integrating RIS technology further 

improves communication, reduces latency, and provides users with a richer experience across all applications 

[89]. 
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8. MEC SYSTEM ASSISTED BY RIS 

Mobile Edge Computing (MEC) supported Reconfigurable Intelligent Surfaces (RIS) and Unmanned Aerial 

Vehicle (UAV) technology embody the new next-gen wireless communication infrastructure paradigm, i.e., the 

6G network. The RIS-assisted MEC systems actively control the wireless channel to enhance signal quality, 

reduce latency, and minimise energy consumption. UAV deployments as edge RIS nodes and MEC nodes ensure 

hitherto unseen coverage and offloading flexibility, which is essential for low-latency and high-computing-power 

applications [90] [91]. MEC reduces backhaul traffic and latency by localising end users via real-time, 

computation-intensive applications such as augmented reality and IoT processing. UAVs offer mobility and 

deployability as mobile base stations or relays, which are particularly valuable in emergencies or areas of poor 

coverage. Inherent energy limitations and dynamic locations constrain UAVs. RIS integration into UAV-based 

MEC networks eliminates these problems by improving wireless channel conditions, increasing adequate 

coverage, and improving energy efficiency for task offloading. Current research verifies that MEC aided by RIS 

using UAVs significantly enhances system capacity, reduces overall energy consumption, and reduces latency 

compared to standard systems without UAV and RIS. [92].   

9. RECONFIGURABLE INTELLIGENT SURFACES: ARCHITECTURE AND OPERATING 

PRINCIPLES: 

RIS panels comprise numerous passive or semi-passive components, with programmable control of reflection 

or transmission. These phase-shift-tuning parameters direct signals constructively to the desired receivers, 

rejecting multipath fading and improving link quality without extra energy use. There are two broad types of RIS: 

- Reflective RIS: Reflects waves entering with phase shift control. 

- STAR-RIS (Simultaneously Transmitting and Reflecting RIS): Offers transmission and reflection support, 

full-space coverage [23], and the increased STAR-RIS concept proposes three main operating modes: Time 

Switching (TS), Mode Switching (MS), and Energy Splitting (ES), with all offering coverage, complexity, and 

energy efficiency trade-offs [25]. 

STAR-RIS rotation maximises it using deep learning methods, ensuring the gain is maximised everywhere in 

space for a fixed RIS deployment [93]—a key optimisation technique in UAV route planning [94]. RIS orientation 

and resource allocation for an integrated system are crucial for maximum system performance. 

 

9.1 Task Offloading in Mobile Edge Computing in RIS-Assisted UAV Networks 

Users’ offloaded tasks are executed by hosted MEC servers at the base station or by a UAV to avoid excessive 

device computation and latency. Task offloading decisions are: 

- Local processing: Performed on user devices. 

- Edge offloading: Performed at UAV or ground MEC servers. 

- Cloud offloading: Sent to remote cloud servers. Optimal offloading is a balance between computation load, 

energy consumption, and communication delay. Strategies jointly optimise transmission energy [95]. CPU 

frequency scaling and RIS phase-shift control to reduce total energy consumption while meeting latency 

constraints [96] [97]. 

   9.2 Improvements with Integrated RIS and UAV 

RIS also improves signal-to-noise ratio (SNR), fading, and coverage by steering signals to users, particularly 

in Nalos scenarios [98]. UAV deployment is added to enhance coverage by positioning RIS panels in three-

dimensional space at optimal locations. Deep learning-based link-quality estimation frameworks indicate that 

UAV communications aided by RISs improve mean link-quality metrics (LQI) by 3-4 points compared with UAV 

systems without RIS [99]. This signifies greater reliability and throughput. 

RIS reduces the need for high transmission power through passive beamforming, which reduces user equipment 

and UAV MEC server energy consumption [100].[95]. Concurrent optimisation of UAV flight path, RIS direction, 

and power offloading achieves an optimal trade-off between UAV propulsion and communication energy 

consumption, driving energy efficiency to new heights.  

8
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10. THE CLASSIFICATION OF (RISS) 

Their deployment and operational characteristics can classify RISs as: Passive RIS: Reflects incoming signals 

without amplification and induces tunable phase shifts to optimise signal strength and coverage. Active RIS: Use 

amplifiers to enhance signal strength, but at the cost of higher power consumption and greater complexity. 

Simultaneously Transmitting and Reflecting RIS (STAR-RIS): Next-generation RIS that simultaneously transmits 

and reflects signals to enable full-space coverage and improved spectral efficiency [23]. 

Location-based RIS can be: 

Terrestrial RIS: Fixed installation over infrastructure or buildings for urban environment coverage of cities. 

UAV-mounted RIS: Reconfigurable, elastic, and dynamic RIS platforms on UAVs.Hybrid RIS networks: 

UAV-borne and ground hybrid of RIS for overall coverage and network robustness [25]. The working process of 

RIS consists of the following: 

Phase Shift Optimisation: Individual-element optimisation to direct beams toward interferers or target users. 

Beamforming Support: Facilitating massive MIMO beamforming by radio environment reconstruction in a bid to 

combat multipath fading and signal blocking. 

Channel Estimation: A pillar of RIS optimal design, most simply solved by pilot signalling and machine 

learning codes, given that RIS elements are passive in nature [94]. 

Unmanned Aerial Vehicles (UAVs) are widely used as relays or mobile base stations to provide coverage during 

emergencies or for temporary periods [101]. 

11. THE PRIMARY CHALLENGES FACED BY UAV-MEC 

Energy Constraints: UAVs have minimal onboard energy, so they must support energy-constrained 

computation alongside communication. 

Dynamic Topology: UAV mobility creates highly dynamic channel conditions, making resource allocation 

even more challenging. 

Low-Latency Constraints: Very low-latency links must be supported for autonomous route planning and for 

surveillance or monitoring operations [10]. 

Security Threats: UAV communications are vulnerable to jamming and eavesdropping in hostile airspaces 

[102].  

 

Fig. 2. RIS Classification 

11. EFFECTIVENESS AND INTEGRATION 

The combination of Mobile Edge Computing (MEC), Unmanned Aerial Vehicles (UAVs), and Reconfigurable 

Intelligent Surfaces (RIS) [103] is the perfect combination of each one of these technologies’ strengths in such a 
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way that each one exploits the strength of the other and reaps a synergistic benefit when deployed together as a 

combined entity, optimally increasing the overall network performance. Not only does it make the most of each 

block’s individual strengths, but it also serves as a learning and integrated system [104]. 

For instance, MEC processing is at the edge of the network to process and interpret data gained from UAVs in 

real time. This enables real-time decision-making and rapid responses to changing environmental conditions or 

operational requirements. Unloading the burden on UAVs of transferring large volumes of data, such as high-

definition images or sensor data, is made easier by MEC processing, which enables timely processing of vital 

information [105]. 

In contrast, data acquired by UAVs can be used to optimise RIS parameters [106]. Processing environmental 

data and user requests by UAVs enables real-time modification of the RIS parameter [107] [108]. 

Together, MEC, UAVs, and RIS will be an emerging building block that enhances network sustainability and 

reliability while enabling synergy among their components. Technological interplay comes with lower operating 

costs, improved energy efficiency [109], and significantly higher network quality. When combined, all of them 

promise even more flexible and robust communication networks to meet the world’s ever-increasing need for 

better connectivity [110]. 

  

Fig.3. System Architecture of RIS -Assisted Communication for IOT Devices with Edge computing 

Integration. 

12. CONTRIBUTION 

Our contributions to optimising the communication system, once integrated with Reconfigurable Intelligent 

Surfaces (RIS) and Mobile Edge Computing (MEC), are as follows. Here, we present the methods and frameworks 

we recommend to optimise the system’s energy efficiency (EE) through the optimal Integration of future 

technologies and the optimal tuning of the system parameters to be applied. 

Optimisation After RIS and MEC Integration: In this subsection, we provide an overview of optimisation 

methods that can be applied after RIS and MEC integration is successfully implemented in the communication 

system. The Integration of these two systems has the potential to enhance performance but may also increase 

complexity, which will need to be addressed. Here, our goal is to identify an optimisation system that not only 

maximises energy efficiency but also drives the system to its maximum efficiency. 

Defining the Optimisation Problem after Integration: The first step in optimisation is to clarify the problem 

arising from the coupling of RIS and MEC. The problem is a multivariable optimisation with numerous constraints 

that reflect the interdependence among the system’s components. We will select the parameters that affect energy 

efficiency, such as transmission power, signal quality, and resource allocation, and establish a mathematical model 

based on the relationships. 

The model will consider recent capabilities of RIS, i.e., its ability to facilitate signal propagation and to exploit 

smart beamforming and reflection, as well as MEC for edge-computation offloading. Taking the above into 

account in our optimisation, we can develop an understandable model to define the nature of new technology-

based complexity. 

New Target Function: Once RIS and MEC are combined, the goal function must be redefined to incorporate 
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the new element introduced by the two technologies. The novel goal function will have variables such as: 

- Enhanced Signal Quality: The signal quality will be immensely enhanced with the two technologies brought 

together. The signal quality will be measurable and usable in the objective function, thereby better reflecting the 

system. 

- Less Energy Consumption: MEC facilitates edge computing, and this would mean less energy consumption 

compared to standard cloud computing methods. 

- Flexible Resource Allocation: Flexible resource allocation, depending on real-time data and client demands, 

would also be considered while designing the new objective function. The degree of flexibility should yield 

optimal energy efficiency and sequential best performance. 

 

 

Fig.5. Energy Efficiency VS. Sensing Duration (M=30) Impact of Growing RIS Drivers on Energy 

Efficiency. 

Figure 5 presents the change in energy efficiency (EE) as a function of the number of Reconfigurable Intelligent 

Surface (RIS) elements at various distances. EE stability increases with the number of RIS elements, achieving 

an incredible gain of nearly 25% over pre-Integration performance, as shown in Figure 5. Improved performance 

indicates the effectiveness of integrating RIS technology into the communication system. 

The iteration index, which serves as a measure of optimisation cycles or process adjustments, varies throughout 

the analysis. This is an essential aspect of the Integration of objective functions, as it indicates that the system can 

achieve high performance even in the face of parameter adjustments. The unoptimised trajectory ascends at a 

lower rate than the optimised trajectory, indicating that the UAV covers a greater altitude over the same horizontal 

distance. This is not just an altitude difference; it is a substantial gain in the UAV’s operational efficacy. The 

combination algorithm aims to provide a flight path with minimal energy consumption and overall flight 

efficiency. By achieving path optimality in flight path optimisation, energy waste is avoided, and the UAV can 

fly at a higher altitude for the minimum available duration. Such path optimisation is highly critical when 

heterogeneous missions, such as surveillance, survey, and package transport, are involved, for which energy and 

time conservation are of top priority. In brief, the Integration of RIS modules evidently improves energy 

efficiency, and the optimal flight trajectory demonstrates the potential of the integrated algorithm to improve UAV 

performance significantly. The conclusions indicate the feasibility of integrating new technologies to achieve 

improved operating performance across various fields. 

13. CHALLENGES   

Maximising the energy efficiency of Reconfigurable Intelligent Surface (RIS)-assisted Multi-access Edge 

Computing (MEC) systems-based Unmanned Aerial Vehicle (UAV) networks [111] is a current trend in 

communication technologies. Not only does it present many challenges, but it also offers many opportunities to 

improve the performance and efficacy of a communication network. 
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RIS Integration: Integrating RIS with traditional Cognitive Radio Networks (CRN) and MEC systems is 

challenging. The reason is that synchronisation among various hardware and software units must be achieved in 

a way that makes it easy [112]. To integrate RIS smoothly with MEC systems for message conveyance and 

exchange, appropriate design and implementation methodologies must be adopted. Compatibility: The second 

principal challenge is the need to integrate with the vast array of technologies used, such as CRN, RIS, and MEC 

[93]. They have disparate protocols, standards, and operational units, so it won’t be easy to provide a broad 

interface that supports appropriate interoperability. Compatibility is essential in guidance towards installing 

converged systems appropriately [113]. 

Channel Variability: The performance and energy efficiency of the UAV network heavily rely on the random 

variability of wireless channels, which typically arises from mobility and environmental factors [114]. These 

variations tend to result in unstable signal quality and connectivity and are against maximum energy efficiency 

[115]. 

Interference Management 

Coordination: Interference management in CRNs, particularly in dynamic-spectrum-access environments, 

requires sophisticated coordination and control methods [116]. Dynamic spectrum allocation of limited resources 

for interference-free communication is vital. [117]. 

 Efficient Allocation: Allocating power, computing resources, and spectrum while ensuring quality of service 

(QoS) is a high-order problem [118]. Sophisticated optimisation techniques must be used to ensure that resources 

are utilised efficiently without degrading service quality. [119]. 

Scalability and Complexity 

Scalability: The solution must scale well with a growing user base, RIS entries, and nodes [120]. Scalability 

with growth must occur without compromising performance or efficiency [121]. 

Cost of Deployment: The very high cost of deploying and operating RIS and MEC hardware can affect the 

financial feasibility of these technologies. An appropriate cost-benefit analysis is needed to assess the feasibility 

of mass deployment [122].  

Data Security: The information passed and processed within MEC and CRNs, particularly when using RIS 

[123], should be a top priority. Being able to protect sensitive information securely is a critically important factor 

in building user trust and system integrity. 

Privacy Issues: The privacy of local computing and dynamic-spectrum-access users is a concern. It should be 

reinforced with effective privacy-defending mechanisms so that users’ data remains secure while resources are 

optimally available [124]. 

14. CONCLUSIONS 

Wireless network design shifts from individual technology optimisation to a unified system design that 

maximises collective synergy through the Integration of CRN, UAV, RIS, and MEC technologies. This poll helps 

explain how various technologies interact, combine, and improve next-generation network performance. 

Before 6G implementations can fully utilise converged systems, further study is needed. Achieving intelligent, 

efficient, and sustainable wireless networks for emerging applications in the Internet of Things, autonomous 

systems, immersive services, and emergency communications requires coordinated research across academia, 

industry, and standardisation bodies. 

Real-time algorithms by 2027, hardware downsizing by 2030, standardisation by 2032, and substantial 

commercial deployment by 2035 are attainable objectives. Collaboration, open-source testbeds for reproducible 

research, industry-academia partnerships for practical validation, active engagement in standardisation 

committees, and government financing for long-term research efforts are needed for success. 

The intelligent combination of these four complementary technologies will enable wireless networks to 

autonomously optimise themselves, requiring minimal energy and providing ubiquitous connection with sub-

millisecond latency and terabit-per-second capacity. This extensive survey provides the research underpinning for 

that ambition. 
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