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Abstract— As the IoT ecosystem continues to grow, edge computing is becoming essential for handling 

and analyzing the vast amount of data generated by connected devices. Unlike traditional centralized data 

models, where information is sent to remote centers for processing, edge computing processes data closer 

to where it is generated. This decentralized approach helps reduce latency, optimizes bandwidth usage, 

and improves both privacy and security. However, the rise in IoT devices and the spread of edge computing 

also increase the potential for cyberattacks, demanding more robust security measures. With AI and 

machine learning being utilized to analyze IoT data, edge computing facilitates this analysis directly at the 

data source, pointing to a future where AI and ML applications are more prevalent on edge devices. 
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1. INTRODUCTION

With the rapid development and acceptance of the Internet of Things (IoT), big data, and 5G network

architecture, traditional cloud computing still needs to meet the ever-increasing data volume generated by network 

edge devices and the need for real-time services. The evolution of edge computing (EC) enables data processing 

near or at the network’s edge, thus reducing the computational and communication overload. However, due to the 

exclusive benefits and characteristics of EC, such as heterogeneous distributed architecture, data processing, 

parallel computation, location awareness, and the need for mobility support, traditional data security and privacy 

mechanisms in cloud computing are not capable of the EC paradigm [1]. IoTs have upgraded conventional, passive 

devices into sensible ones, allowing them to transmit considerable volumes of relevant data over the internet. Data 

processing and analysis capabilities within an IoT framework enable these devices to function autonomously with 

minimal human intervention. Artificial intelligence (AI)--based algorithms are employed to analyze the 

substantial volumes of data generated within IoT networks, enabling the delivery of value-added public services 

[2]. IoT services are assembled on a foundation of miscellaneous technologies in hardware and software. These 

services leverage various network technologies and communication protocols, which include radio frequency 

identification (RFID), near-field communication (NFC), ZigBee, Bluetooth, electronic product code (EPC), low-

energy wireless communication protocols, barcodes, long-term evolution (LTE) advanced, AI, and wireless sensor 

networks (WSNs) [3]. 

Projections indicate that the global IoT market will experience a compound annual growth rate (CAGR) of 

10.53% from 2019 to 2025 [4]. Cisco estimates that in 2030, over 500 billion devices will be connected to the 

internet. In the present day, the impacts and applications of IoT are particularly notable in areas such as 

environmental sensing, healthcare monitoring systems, logistics supply chain management, real estate 

construction, energy management, drone-based applications, the manufacturing industry, and various other fields. 

Securing the IoT systems is crucial as they continue to grow and integrate further into our daily lives. Despite its 

numerous benefits, IoT also poses serious security concerns for enterprises and individual users. Any device that 

is connected to the internet could act as a doorway to an extensive network, including sensitive data. 
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Interconnected devices aggravate security concerns further by exposing more security flaws and vulnerabilities. 

In the absence of appropriate security and privacy measures, potential attacks and security threats may outweigh 

IoT benefits and applications.  

 

 
Fig. 1. Global IoT Malware during 2021 and 2022 [6] 

 

Security solutions are expected to be lightweight that can be hosted on devices with lesser memory, 

computational abilities, and cost. Although numerous security solutions are proposed for standalone constrained 

devices, they are unsuitable for integration into the IoT network. The edge devices’ heterogeneous nature, diverse 

computational capabilities, and network complexity necessitate lightweight security solutions that adhere to global 

standards [5]. The rapid expansion of IoT devices has opened new opportunities for cybercriminals. Security 

experts are frequently uncovering new malware targeting poorly secured IoT devices.  

In 2022, SonicWall Capture Labs recorded 112.3 million instances of IoT malware, marking an 87% rise 

compared to 2021 (as shown in Fig. 1). Cyber attackers exploit IoT devices and networks to steal sensitive user 

data, including financial information, card details, location data, and health records. In edge computing-based 

(EC) IoT networks, significant amounts of user data are processed at the network's edge, spanning various 

industries and applications. The connection between edge devices and EC nodes is typically established through 

wired or wireless links. In contrast, EC nodes communicate with the cloud or data centers via public or private 

networks [7]. There are numerous cyberattacks targeting IoT applications. For example, the 2016 Mirai attack 

compromised over 2.5 million IoT devices and launched distributed denial of service (DDoS) attacks. Subsequent 

attacks, like Hajime and Reaper, further emphasized the security threats facing IoT devices [8]. As a result, 

developing security standards and guidelines for IoT is crucial to building secure and resilient IoT services. 

Regulatory bodies globally have also recognized the importance of IoT security [9]. 

This article provides a detailed review of IoT systems' security and privacy challenges, addressing associated 

technologies and protocols. It evaluates the current IoT architecture, identifies the security risks and limitations 

of underlying technologies, and concludes by summarizing key points on ongoing IoT security challenges, 

offering potential solutions. 

2. EDGE COMPUTING 

EC leverages present techniques, which ensures the processing of sensitive data at the network edge itself, thus 

managing the downstream data to centrally located cloud services as well as upstream data for IoT services. The 

“network edge” implies any computing or network resource between the data sources and the centrally located 

cloud-based data centers. The primary functions of EC include offloading computing jobs, data storage and 

caching, processing collected information, distributing user requests, and delivering cloud-based services closer 

to the end user. Although cloud computing has proven to be efficient for data processing due to its superior 

computational abilities power, the networks' bandwidth could not match the speed of data processing, forming a 

bottleneck for cloud-based computing. The concept of EC was conceived to place computing closer to data 

sources, offering several advantages over the traditional cloud-based computing approach. A comparison is 

presented in Table 1 [10]. 
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Table 1: Comparing IoTs, Edge and Cloud computing [11] 

 
IoT Edge Cloud 

Implementation Distributed Distributed Centralized 

Nature of the devices Physical  Edge nodes Virtual nodes 

Computing capacity Less Less Larger 

Memory availability Very limited Limited Unlimited 

Response time N.A. Fast Slow 

Big data Source Process Process 

 

2.1 Edge Computing Architecture 

The general architecture of EC is depicted in Fig. 2, representing edge computing MEC servers closer to the end 

users as compared to cloud-based data centers. Despite lower computational abilities, EC servers can offer better 

quality of service (QoS) and lower latency than cloud servers. The generic architecture of EC can be divided into 

three layers: the front-end, near-end, and far-end. The characteristics of each layer in an EC architecture are 

discussed below [11]. 

2.1.1. Front End 

The Front-End layer consists of end devices such as sensors and actuators that manage data flow between two 

networks, functioning primarily as gateways for data entry or exit. Edge devices in this layer handle tasks such as 

data transmission, routing, processing, monitoring, filtering, translation, and storage as user data moves between 

networks. Edge computing (EC) capitalizes on the computing power of nearby end devices to provide real-time 

services for specific applications. However, since end devices have limited processing capacity, they often rely 

on server resources to meet most service requirements. 

 

 

Fig. 2. Edge computing architecture. 

2.1.2. Near End 

The Multi-access Edge Computing (MEC) model and gateways in the near-end environment are designed 

to move technology resources closer to client devices and end users. Edge servers in this layer handle real-

time data processing, data caching, and offloading computation tasks, offering computing and cloud-like 

services at the network edge. This reduces reliance on centralized cloud services for these processes. 

2.1.3. Far End 

The far end of the EC architecture consists of cloud data centers, including a centralized data hub and 

interconnected regional centers. These cloud data centers act as the ultimate repository for information. 

Since cloud servers are located far from the end devices, transmission latency becomes critical when 

delivering large-scale parallel data processing and storage services. 
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2.2 Edge computing benefits 

According to the estimates published in Gartner report, about 75% of the network data produced at the 

business houses will be shifted out from the centrally located data centers for processing, a substantial 

increase from the 10% predicted in 2018. This trend demonstrates the growing adoption and acceptance of 

EC. By shifting computing resources and intelligence closer to the network's edge, EC offers numerous 

benefits, such as significantly lower latency, increased bandwidth, and enhanced privacy and security [12], 

[13]. These benefits of EC are further steering the adoption of various services such as IoT/M2M, 4K Ultra 

High Definition (UHD) video services, and mobile serious gaming. Also, MEC can offer application 

providers local context awareness, including Radio Access Network (RAN) analytics, traffic characteristics, 

and device location information [14]. Thus, EC solves latency-related challenges and supports users to 

optimize the benefits of cloud computing architectures. Forms of EC include local devices, localized data 

centers, and regional data centers. The benefits of EC can be summarized as, 

Quicker data processing and analysis: EC minimizes the necessity for data transmission to centrally located 

cloud data centers, thus quicker response times and real-time processing. EC characteristics are leveraged 

in applications requiring rapid feedback, such as automatic driving, intelligent manufacturing, and video 

monitoring.  

Security: EC processes the user data locally, mitigating the risk of data loss or leakage associated with data 

transmission to the cloud.  

Lower energy consumption and bandwidth cost: EC minimizes the dependence on broad network 

bandwidth and energy consumption due to data processing locally. 

2.3 Edge Computing Challenges  

The edge-based servers provide distributed computing resources at a small-scale level; thus, EC-based IoT 

services are scalable and able to meet demands in large-scale applications like smart cities or autonomous 

driving. However, integrating EC with IoT poses unique challenges, and a seamless and efficient approach is 

needed to bridge the gap between these two technologies. The three important challenges in EC-based IoT 

systems are summarized below: 

Heterogeneous IoT infrastructure: The edge devices/ sensors are deployed in diverse environments with 

unique purposes. Hence, various hardware devices and communication protocols are needed. Also, the 

deployment architecture of these devices in the EC environment varies with the application type. Thus, there 

is a need to explore a cooperation architecture involving hardware devices, communication protocols, and 

established industry standards to unify this diversity.  

Coordination between communication and computing: Coordination between communication and 

computing is a bottleneck in the success of EC-driven IoT services. The limited power and computational 

capacity of edge devices and servers limit the amount of workload that can be transferred to the edge servers. 

Hence, an orchestration mechanism should be in place that allocates the workload between edge servers and 

IoT devices at optimal communication and computation costs.  

Complicated security and privacy issues: Adversaries target IoT devices and edge servers to gain access to 

user data or disrupt the services. EC-based IoT systems’ heterogeneity and constrained computing capability 

are the foremost challenges in ensuring security and privacy. Appropriate countermeasures like robust 

authentication and encryption techniques, secured communication protocols, regular updates to underlying 

software and firmware to patch vulnerabilities, and adherence to strict access control policies should be 

adopted and implemented to address these challenges. 

3. DATA SECURITY AND PRIVACY CHALLENGES 

EC requires outsourcing end-user private data to external service providers, such as cloud or edge data centers, 

leading to data ownership and control loss. This separation can result in data loss, leakage, unauthorized 

access, compromised confidentiality and data integrity. EC leverages various technologies, including 

offloading, virtualization, and outsourcing, that bring the computational tasks closer to data sources. Users’ 

data privacy is an important driver for security, with the International Telecommunication Union's 

Telecommunication Standardization Sector (ITU-T) defining privacy as the right of individuals to manage 

the collection, processing, and storage of their personal data and control its access. The data privacy 
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requirement is often ensured through mechanisms like cryptography, which restricts access to authorized 

parties and inhibits unauthorized disclosure [1]. 

Several factors contribute to the increased attack surface in the EC model. Two primary concerns are hardware 

limitations and software heterogeneity. Devices and servers at the edge layer typically have less computing 

and storage capacity than cloud servers, making implementing robust security measures like firewalls 

challenging and leaving them more vulnerable to attacks. Additionally, the lack of standardization in protocols 

and operating systems across diverse edge deployments further increases the risk of security breaches. 

Security threats in edge computing (EC) are continuously evolving, mainly due to the frequent mobility of 

user devices. These security challenges stem from design flaws, misconfigurations, and implementation 

errors. Xiao et al. have categorized most EC security threats into four main types, as shown in Fig. 3: 

Distributed Denial of Service (DDoS) attacks, side-channel attacks, malware injection attacks, and 

authentication and authorization attacks. Corresponding mitigation strategies for these threats are detailed in 

Table II [17]. 

 

 

Fig. 3 Classification of EC security threats [15] 

Distributed Denial of Service: DDoS attacks involve unauthorized server access through compromised edge 

devices. In these attacks, adversaries take control of edge devices and launch denial-of-service assaults on 

edge servers, effectively shutting down their services. Two common forms of DDoS attacks are zero-day 

attacks and flooding-based attacks. Flooding attacks overwhelm a server by bombarding it with many 

malicious network packets, such as UDP overflows, ICMP floods, SYN flash floods, HTTP flash floods, 

SYN flooding, ping of death, and delays, disrupting normal operations. Zero-day DDoS attacks are more 

advanced, relying on the attacker identifying an unknown vulnerability in the server's code. The attacker 

exploits this vulnerability, causing memory corruption and the eventual breakdown of the server's services. 

Flaws in communication network protocols primarily cause flooding attacks, while zero-day attacks exploit 

unaddressed vulnerabilities in server software [18]. 

Side-channel attacks exploit publicly accessible information about a target, known as side-channel data, 

rather than directly accessing sensitive information. Attackers use the correlations between the gathered 

public data and private information to infer the protected data. These attacks can occur at any point in the 

edge computing (EC) network, as public information can often be linked to sensitive data. For example, 

attackers may capture communication signals (such as packets or wave signals) to expose private user data 

or monitor the power consumption of edge devices to reveal usage patterns. Power analysis is a common 

technique for extracting side-channel data from EC networks. Power analysis-based attacks are categorized 

into two types: simple power analysis and differential power analysis. Simple power analysis involves 

closely examining individual power waveforms to extract valuable information. On the other hand, 

differential power analysis (DPA) consists of recording a series of power consumption readings while the 
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device processes specific data, such as a secret encryption key. These readings are then compared to known 

power models to deduce parts of the secret key [19]. 

Table 2: Mitigation strategies against EC cybersecurity threats [15] 

Station System Type 

DDoS attack 

Detect and filter technique is adopted. Individual packets are 

inspected to identify and remove the malicious content from the 

network. Machine learning and packet entropy can also help 

identify malicious packets. Countermeasures against zero-day 

attacks are difficult as the source codes are buried deep in the 

firmware. 

 

Side-channel attacks 

Data perturbation and differential privacy techniques. K-

anonymity is the commonly used data perturbation technique that 

alters the identifier information before publishing sensitive 

attributes along with the data. 

Malware injection attacks 

The detection-and-filter technique has emerged as effective against 

server-side injection attacks. Defense strategies normally rely on 

static analysis to detect malicious code and implement a fine-

grained access control mechanism. 

Authentication and 

authorization attacks 

Two common methods are improving the security of communication 

protocols and reinforcing cryptographic implementations to 

counter attacks on authentication protocols. To prevent over-

privileged attacks, the most effective strategy is to enhance the 

permission models of operating systems on edge devices. 

A malware injection attack is a data security threat where attackers insert malicious code into a legitimate 

software application running on an edge server. This compromised software may lose functionality and 

potentially gain access to users' sensitive data. Such attacks exploit software vulnerabilities, allowing the 

attacker to run arbitrary code and take control of the targeted system for malicious purposes [20]. Due to 

the resource limitations of edge devices, they often lack robust firewalls, making them vulnerable to 

cybersecurity threats. Attackers can covertly install malicious software on an edge device or server. Server-

side attacks are typically classified into four categories: SQL injection, cross-site scripting (XSS), XML 

signature wrapping, and Cross-Site Request Forgery (CSRF) or Server-Side Request Forgery (SSRF). 

Device-side attacks, on the other hand, commonly target the firmware of edge devices. 

Authentication and Authorization attacks: Authentication is the process of confirming the identity of a 

user requesting access to services, while authorization defines the access rights and privileges of that user. 

In EC, authentication commonly occurs between edge devices and servers but can also happen between 

devices or servers in a decentralized system. Authorization involves the edge server granting access 

permissions to a particular device or its applications. Both processes in EC are susceptible to several types 

of attacks, which can be categorized into four main groups: dictionary attacks, attacks on authentication 

mechanism vulnerabilities, exploitation of authorization protocol flaws, and over-privileged attacks. [17]. 

Dictionary attacks use a list of access keys to bypass authentication systems. Authentication vulnerabilities 

are often exploited through weaknesses in security protocols like WPA/WPA2. Authorization attacks take 

advantage of poorly designed authorization protocols running in EC systems. In over-privileged attacks, 

attackers deceive the system to gain excessive access rights, allowing them to perform malicious actions 

within the EC network. 

4. EDGE AI 

Big data processing requires more powerful methods, such as AI technologies, to extract insights that enable better 

decisions and strategic business moves. Edge artificial intelligence, or edge AI, is the deployment of AI algorithms 

and models on edge devices like sensors or IoT devices. Edge AI facilitates real-time data processing and analysis 

without dependence on cloud computing infrastructure. Edge AI combines EC and AI technologies to execute 

machine learning (ML) algorithms on edge devices. Technologies such as self-driving cars, wearable devices, 
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security cameras, and smart home appliances leverage edge AI capabilities to promptly provide users with real-

time information. ML can control shared resources at the edge smartly and adaptively [21]. Edge AI offers several 

benefits. Firstly, it decentralizes the data required for refining algorithms. Secondly, it enables analysis and 

decision-making to be conducted close to the data source. From a security and privacy standpoint, edge AI can 

mitigate attack vectors by minimizing or eliminating data transfer between edge devices and their data centers. 

Training and execution of AI models on edge devices are confronted by several challenges and roadblocks 

discussed below [22]. 

Limited hardware capabilities: Edge devices are usually constrained by several factors, such as processing 

capability, data storage requirements, and network bandwidth, that limit the hosting of complex AI algorithms on 

edge devices.  

Power constraints Mostly, edge devices support mobility, are battery-operated, and have low power, limiting 

their ability to perform intensive AI tasks.  

Scalability issues Unlike cloud resources, the resources at the edge layer need to be more flexible to scale, and 

the heterogeneous nature of these resources can degrade service quality.  

Collaboration challenges Coordination and cooperation between heterogeneous edge devices can be challenging, 

resulting in poor efficiency and effectiveness of AI models.  

Data privacy concerns: Using original private data for model optimization on edge devices raises privacy 

concerns, and limited communication resources can restrict the distribution of computation to devices. 

4.1 Hardware for Edge Devices 

The algorithm and hardware selected for running a model on an edge device are crucial. Optimal 

hardware choice should consider accuracy, energy consumption, data throughput, and cost 

metrics. Edge devices designed for AI model execution can typically be categorized into four types 

based on their technical architecture [23]. 

Application-Specific Integrated Circuit (ASICs) Chip: ASICs are the best possible option for 

specific applications rather than general functions. Their smaller footprint, lesser power 

consumption, more robust security and performance make them ideal for meeting the demands of 

edge computing patterns for AI algorithms. On the other hand, Edge Tensor Processing Units 

(TPUs) are Google’s custom-designed chips used to accelerate Machine Learning workloads.  

Graphics Processing Unit (GPUs): GPUs leverage the inherent data parallelism of mining 

programs to enhance throughput, achieving higher speeds compared to central processing units 

(CPUs). These GPUs' characteristics make them suitable for implementing AI algorithms, thus 

making them an ideal choice for designing and implementing edge devices. For example, 

NVIDIA’s Jetson TX1, TX2, and DRIVE PX2 are embedded AI computing devices equipped with 

GPUs. These devices offer a small form factor, lower latency, and low power requirements.  

Field-Programmable Gate Array (FPGA): FPGAs are highly flexible, programmable hardware 

with lower energy requirements, parallel computing resources, and high security. Developers 

familiar with hardware description languages can quickly implement AI algorithms on FPGAs. 

However, FPGAs have poorer compatibility and more limited programming capabilities compared 

to GPUs. Leading FPGA manufacturers include AMD-owned Xilinx and Intel Altera.  

Brain-Inspired Chip: Brain-inspired chips are constructed on a neuromorphic architecture, 

featuring programmable neurons on a silicon chip that process tasks akin to the human brain using 

synapses. These chips enable significantly accelerated processing of neural network applications 

in real-time, with extremely low power needs. Examples of neuromorphic processor chips include 

IBM True North and Intel Loihi, which are well-suited for complex AI algorithms. 

5. CONCLUSION 

Edge computing offers numerous benefits but also poses challenges that must be tackled. Security and privacy are 

foremost cause of concern as the user-sensitive data is processed and analyzed near edge devices. Implementing 

robust encryption, data protection, and secure communication protocols is crucial to mitigate these risks. 

Managing and scaling distributed edge infrastructure can also be complex, requiring seamless integration, network 

connectivity, and device management as edge device numbers increase. Standardization and interoperability 
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across various edge computing solutions are essential for creating a cohesive and scalable ecosystem. Deploying 

machine learning on IoT devices reduces network congestion by enabling computations near data sources, 

ensuring data privacy, and lowering power consumption compared to continuous wireless transmission to central 

servers. The integration of specialized hardware into edge devices enhances computing efficiency in physical 

environments and improves responsiveness. Neuromorphic processors and sensors are also emerging, offering 

real-time intelligence and continuous onboard learning at the edge, even with a tight power budget, enabling 

complex AI computation at the network’s edge. 
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